
2024 | Keyfactor

Keyfactor Orchestrators 11.4

Installation and Configuration Guide

11.4 Keyfactor Orchestrators Installation and Configuration Guide i

Table of Contents

1.0 Introduction 1

2.0 Installing Orchestrators 2
2.1 Orchestrator Job Overview 4
2.2 Universal Orchestrator 6

2.2.1 Preparing for the Universal Orchestrator 7
2.2.1.1 System Requirements 7
2.2.1.2 Create Service Accounts for the Universal Orchestrator 11
2.2.1.3 Configure Certificate Root Trust for the Universal Orchestrator 15
2.2.1.4 Grant the Orchestrator Service Account Permissions on the CAs 16
2.2.1.5 Acquire a Certificate for Client Certificate Authentication (Optional) 18
2.2.1.6 Upgrading the Universal Orchestrator 22

2.2.2 Install the Universal Orchestrator on Windows 25
2.2.3 Install the Universal Orchestrator on a Linux Server 40
2.2.4 Install the Universal Orchestrator in a Linux Container 50
2.2.5 Optional Configuration 62

2.2.5.1 Configure Windows Targets for Remote Management 63
2.2.5.2 Configure the Universal Orchestrator for Remote CA Management 66
2.2.5.3 Installing Custom-Built Extensions 68
2.2.5.4 Configuring Script-Based Certificate Store Jobs 74
2.2.5.5 Configure Logging for the Universal Orchestrator 78
2.2.5.6 Start the Universal Orchestrator Service 81
2.2.5.7 Change Service Account Passwords 82
2.2.5.8 Register a Client Certificate Renewal Extension 89

2.3 Java Agent 96
2.3.1 Preparing for the Java Agent 97

2.3.1.1 Create Service Accounts for the Java Agent 97
2.3.1.2 Create a Group for Java Agent Auto-Registration (Optional) 98
2.3.1.3 Configure Certificate Root Trust for the Java Agent 99
2.3.1.4 Create Environment Variables for the Java Agent on Windows 99

2.3.2 Install the Java Agent on Windows 102
2.3.3 Install the Java Agent on Linux 107
2.3.4 Optional Configuration 114

2.3.4.1 Configure Logging for the Java Agent 114
2.3.4.2 Start the Keyfactor Java Agent Service 117
2.3.4.3 Uninstall the Java Agent 118

2.4 Bash Orchestrator 119
2.4.1 Preparing for the Keyfactor Bash Orchestrator 120

2.4.1.1 System Requirements 120
2.4.1.2 Create a Service Account for the Keyfactor Bash Orchestrator 122
2.4.1.3 Create a Group for Auto-Registration (Optional) 122
2.4.1.4 Certificate Root Trust for the Keyfactor Bash Orchestrator 123

2.4.2 Install the Keyfactor Bash Orchestrator 123
2.4.3 Install Remote Control Targets 128
2.4.4 Optional Configuration 130

2.4.4.1 Configure Logging for the Keyfactor Bash Orchestrator 130
2.4.4.2 Start the Keyfactor Bash Orchestrator Service 131

2.5 Troubleshooting 131
2.6 Appendices 149

2.6.1 Appendix - Generate New Credentials for the Java Agent 150
2.6.2 Appendix - Set up the Universal Orchestrator to Use Client Certificate Authentication via a Reverse Proxy: Citrix
ADC 151
2.6.3 Appendix - Set up the Universal Orchestrator to Use Client Certificate Authentication with Certificates Stored in
Active Directory 164
2.6.4 Appendix - Set up the Universal Orchestrator to Use a Forwarding Proxy 179

3.0 Glossary 181

11.4 Keyfactor Orchestrators Installation and Configuration Guide ii

4.0 Copyright Notice 191

11.4 Keyfactor Orchestrators Installation and Configuration Guide iii

List of Tables

Table 1: Linux Container Parameters 60
Table 2: Remote CA Configuration Parameters 67

11.4 Keyfactor Orchestrators Installation and Configuration Guide iv

List of Figures

Figure 1: Orchestrator Job Flow 5
Figure 2: Select the Download x64 Option Under Run Console Apps 8
Figure 3: Client Secret for Orchestrator Client in Keyfactor Identity Provider 14
Figure 4: Local Security Policy 15
Figure 5: CA Permissions 17
Figure 6: Microsoft Certificate Template Application Policies for Client Authentication Certificate 19
Figure 7: Microsoft Certificate Template Request Handling for Client Authentication Certificate 20
Figure 8: Installation Files Blocked after Download 26
Figure 9: CA Configuration Settings 67
Figure 10: View Packages as Part of a List 69
Figure 11: View Packages on Individual Pages 69
Figure 12: Find the Latest Version of the Package 69
Figure 13: Download the Package Zip File 70
Figure 14: Universal Orchestrator on Windows NLog.config File 80
Figure 15: Universal Orchestrator on Linux NLog.config File 81
Figure 16: Universal Orchestrator Service 82
Figure 17: Change Service Account Password in Services MMC 83
Figure 18: Application Settings for Client Certificate Renewal 93
Figure 19: Keyfactor Command Permissions Required for Automatic Renewal and Revocation of Client Authentication Certi-
ficates 95
Figure 20: Search for System Environment Variables 100
Figure 21: Edit the System Path Environment Variable to Add the Path to Java 101
Figure 22: Add JAVA_HOME System Environment Variable 102
Figure 23: Keyfactor Java Agent Local Installation on Windows 106
Figure 24: Keyfactor Java Agent Local Installation on Linux 111
Figure 25: Configure Logging for Keyfactor Java Agent on Windows 116
Figure 26: Configure Logging for Keyfactor Java Agent on Linux 117
Figure 27: Keyfactor Java Agent Service on Windows 118
Figure 28: SSH Key Discovery Flow 119
Figure 29: SSH User Key Management Flow 120
Figure 30: Find the Server Group ID 125
Figure 31: Configure Logging for the Keyfactor Bash Orchestrator 131
Figure 32: Orchestrator Management for a Keyfactor Bash Orchestrator 132
Figure 33: Orchestrator Management for a Keyfactor Bash Orchestrator 133
Figure 34: Status for the Keyfactor Bash Orchestrator Service 138
Figure 35: Certificate Incorrectly in the Trusted Root Certificate Store 147
Figure 36: Find the Certificate for the Keyfactor Command Web Site 148
Figure 37: Configure Keyfactor Command for Client Certificate Authentication 158
Figure 38: IIS Module for Client Certificate Authentication 159
Figure 39: Configure only Anonymous Authentication at the Server Level in IIS 160
Figure 40: Disable Authentication Methods at the Application Level in IIS 160
Figure 41: Configure SSL Settings in IIS for Client Certificate Authentication 161
Figure 42: Configure IIS Client Certificate Mapping Authentication for the Default Web Site 162
Figure 43: Configure Authorization Credentials for Keyfactor Orchestrators 162
Figure 44: Configure Application Setting in Keyfactor Command to use the Header Certificate 163
Figure 45: Client Certificate Authentication with AD Storage Does Not Require Certificate Authentication Configuration in
Keyfactor Command 165
Figure 46: IIS Module for Client Certificate Authentication with AD Storage 166
Figure 47: Configure Client Certificate Authentication at the Server Level in IIS 167
Figure 48: Disable Authentication Methods at the Application Level in IIS 167
Figure 49: Configure SSL Settings in IIS for Client Certificate Authentication 168
Figure 50: Microsoft Certificate Template General for Client Authentication Certificate 169
Figure 51: Microsoft Certificate Template Request Handling for Client Authentication Certificate 170

11.4 Keyfactor Orchestrators Installation and Configuration Guide v

Figure 52: Microsoft Certificate Template Application Policies for Client Authentication Certificate 171
Figure 53: Microsoft Certificate Template Security for Client Authentication Certificate 172
Figure 54: System Environment Variable to Define a Proxy URL for Use by the Universal Orchestrator on Windows 179

11.4 Keyfactor Orchestrators Installation and Configuration Guide vi

1.0 Introduction

The Keyfactor Command Documentation Suite includes:

 l Keyfactor Command Reference Guide
 l Keyfactor API Reference Guide
 l Keyfactor Command Server Installation Guide
 l Keyfactor Orchestrators Installation and Configuration Guide
 l Keyfactor Command Release Notes & Upgrading

In addition, Keyfactor offers documentation for products that are not part of the Keyfactor Command
Documentation Suite, including the Keyfactor Command Upgrade Overview and installation guides
for third-party CA gateways that interface with Keyfactor, which are available upon request.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 1

2.0 Installing Orchestrators

Keyfactor offers several orchestrators (a.k.a. agents) that may be used to interact with and enhance
the functionality of the Keyfactor Command Server.

Tip: Keyfactor recommends that you check the Keyfactor GitHub Site (https://key-
factor.github.io/integrations-catalog/) with each release that you install to check if you will
need to download the updated orchestrators to work with that version of Keyfactor
Command.

This guide covers installation of the following orchestrators:

 l Keyfactor Universal Orchestrator
The Keyfactor Universal Orchestrator runs on Windows Servers, Linux servers, and in Linux
containers. It can be used to:
 o Run SSL discovery and monitoring tasks.
 o Manage synchronization of certificate authorities in remote forests (installations on Windows

only).
 o Collect logs from the orchestrator for central review (full server installations only).
 o Run custom jobs to provide certificate management capabilities on a variety of platforms and

devices.
 o Run custom jobs to execute tasks outside the standard list of certificate management func-

tions. This powerful feature can execute just about any job that requires processing on the
orchestrator and submitting data back to Keyfactor Command.

As of this release, the following functions, some of which were part of the Keyfactor Windows
Orchestrator, are now included among the custom extensions supported for the Keyfactor
Universal Orchestrator:
 o Interact with Amazon Web Services (AWS) resources for certificate management.
 o Interact with Citrix NetScaler devices for certificate management.
 o Interact with F5 devices for certificate management.
 o Interact with Windows servers (a.k.a. IIS certificate stores), create new bindings for IIS web

sites and manage certificates in both the Web Hosting certificate store and the Personal
certificate store.

 o Remote Java keystore certificate management.
 o Remote PEM store certificate management.
 o Remote PKCS12 store certificate management.

These custom extensions and more are publicly available at:

https://keyfactor.github.io/integrations-catalog/content/orchestrator

11.4 Keyfactor Orchestrators Installation and Configuration Guide 2

https://keyfactor.github.io/
https://keyfactor.github.io/
https://keyfactor.github.io/integrations-catalog/content/orchestrator

The final release of the Keyfactor Windows Orchestrator was version 8.7. This version of the
Keyfactor Windows Orchestrator is not compatible with Keyfactor Command version 11.0.
Customers should migrate to the Keyfactor Universal Orchestrator with custom extensions as
needed.

 l Keyfactor Bash Orchestrator
The Keyfactor Bash Orchestrator runs on Linux servers and is used to perform discovery and
management of SSH public keys, including installation of new keys and automated removal of
unauthorized keys.

 l Keyfactor Java Agent
The Keyfactor Java Agent runs on Windows or Linux servers and is used to perform discovery of
Java keystores and PEM certificate stores, to inventory discovered stores, and to push certi-
ficates out to stores as needed. In addition, the Keyfactor Java Agent can be extended to create
custom certificate store jobs.

Important: The Keyfactor Java Agent will be deprecated in a future version of Keyfactor
Command. Customers are encouraged to begin planning a migration to the Keyfactor
Universal Orchestrator with the Remote File custom extension publicly available at:

https://github.com/Keyfactor/remote-file-orchestrator

For more information, see Installing Custom-Built Extensions in the Keyfactor Orches-
trators Installation and Configuration Guide.

Keyfactor also offers a variety of tools to allow users to develop custom orchestrators and exten-
sions, including:

 l Keyfactor AnyAgent Framework

The AnyAgent capability of the Keyfactor Universal Orchestrator and Java Agent allows manage-
ment of certificates regardless of source or location by allowing customers to implement custom
agent functionality.

 l Keyfactor Integration SDK

The Keyfactor Integration SDK (software development kit) includes a variety of tools for building
a custom orchestrator, including the Keyfactor Native Agent, which is a reference imple-
mentation intended for customers wanting to include Keyfactor Command certificate store
management functionality in embedded or other platforms.

 l Keyfactor Orchestrator NuGet Package

The Keyfactor Orchestrator NuGet package is designed to allow customers to build custom
extensions for the Keyfactor Universal Orchestrator.

 l Keyfactor GitHub Site

Keyfactor offers several publicly available integrations and plugins for the Keyfactor platform in
the Keyfactor GitHub. Find all the latest developer tools and resources to integrate the
Keyfactor platform with your PKI, Cloud, and DevOps infrastructure.

https://keyfactor.github.io/

11.4 Keyfactor Orchestrators Installation and Configuration Guide 3

https://github.com/Keyfactor/remote-file-orchestrator
https://keyfactor.github.io/

These tools for developing custom orchestrators and extensions are not documented in this guide.
For more information about these and other custom orchestrator solutions, contact your Keyfactor
representative.

Important: The Keyfactor Java Agent will be deprecated in a future version of Keyfactor
Command. Customers are encouraged to begin planning a migration to the Keyfactor
Universal Orchestrator with the Remote File custom extension publicly available at:

https://github.com/Keyfactor/remote-file-orchestrator

For more information, see Installing Custom-Built Extensions in the Keyfactor Orchestrators
Installation and Configuration Guide.

2.1 Orchestrator Job Overview

Keyfactor orchestrators can be used to perform a wide variety of jobs. Out of the box, orchestrators
can manage certificate stores, manage SSH keys, perform SSL scanning, fetch system logs, and
synchronize certificates from CAs in remote forests. Orchestrator jobs fall into these broad types:

 l Certificate Store Jobs

This type of job includes the built-in jobs for managing certificate stores, based on the type(s) of
certificate stores supported by the orchestrator, and custom-built certificate store jobs that can
be added with an extension (see Installing Custom-Built Extensions on page 68) or script (see
Configuring Script-Based Certificate Store Jobs on page 74).

Certificate store jobs (built-in or custom-built), are managed in Keyfactor Command with certi-
ficate store types. If you're adding a custom-built certificate store job, you'll need to add a user-
defined certificate store type to go with it (see Certificate Store Types in the Keyfactor
Command Reference Guide and Certificate Store Types in the Keyfactor API Reference Guide).

 l Custom Jobs

This type of job is intended to implement just about anything else you need an orchestrator to do
other than manage certificate stores. The built-in fetch logs job is an example of a custom job.

Custom jobs are managed in Keyfactor Command with custom job types. If you're adding a
custom job, you'll need to add a custom job type to go with it (see Custom Job Types in the
Keyfactor API Reference Guide).

Custom jobs are supported only by the Keyfactor Universal Orchestrator.
 l Other Jobs

This type of job includes the built-in jobs for SSL scanning and certificate synchronization from
remote CAs.

Prescripts and Postscripts

All of the job types supported by the Keyfactor Universal Orchestrator—including the built-in jobs—
support executing a prescript and/or postscript as part of the job. A prescript might be used to fetch
credentials from a privilege access management (PAM) solution to pass in to the username and

11.4 Keyfactor Orchestrators Installation and Configuration Guide 4

https://github.com/Keyfactor/remote-file-orchestrator

password parameters for a certificate store. A postscript might be used to restart the web service
(e.g. Apache) after performing a management job to replace the certificate in the certificate store
for the web server. Prescripts and postscripts for all types of jobs are configured similarly to the
description provided for installing custom-built extensions (see Installing Custom-Built Extensions
on page 68).

Note: The prescript and postscript functionality of the Keyfactor Universal Orchestrator has
been replaced by other functionality in Keyfactor Command such as that provided by
Keyfactor Command workflows (see Workflow Definitions in Keyfactor Command Reference
Guide). As a result, prescript and postscript functionality has been deprecated and will be
removed from a future release.

Orchestrator Job Flow

An orchestrator job begins when an orchestrator queries Keyfactor Command to ask for jobs and the
Keyfactor Command orchestrator API returns a list of the jobs the orchestrator needs to run. The
flow continues as shown in the following chart.

Figure 1: Orchestrator Job Flow

11.4 Keyfactor Orchestrators Installation and Configuration Guide 5

2.2 Universal Orchestrator

The Keyfactor Universal Orchestrator is designed to run jobs at the request of the Keyfactor
Command server. Jobs primarily perform certificate management tasks, but other types of oper-
ations are also supported. The orchestrator operates as a .NET Core based service on a Windows
server, Linux server, or in a Linux container and communicates with a Keyfactor Command server to
receive job tasks and report job results. Along with the job results, data can be returned to the
Keyfactor Command server and stored in the Keyfactor Command SQL database. Extensions are
hosted by the orchestrator and implement the jobs to be executed.

The orchestrator includes these built-in extensions:

 l Discover and monitor certificates at TLS 1.3 endpoints either within the local network or across
the internet using any of the 5 ciphersuites mentioned in appendix B.4 of RFC 8446. Certificates
from the results of SSL discovery and monitoring are imported into Keyfactor Command for
viewing, reporting and alerting purposes. Scanning using server name indication (SNI) is
supported.

 l Retrieve logs generated on the orchestrator via the Keyfactor Command Management Portal.
This task returns up to 2 MB of log data from the end of the orchestrator log file to be viewed in
the Management Portal. This features is supported only on full server installations.

 l Manage certificates from remote Microsoft Certificate Authorities (CAs) using the Management
Portal. Certificates from remote CAs can be imported into Keyfactor Command for viewing,
reporting and alerting purposes. This feature is supported only on Windows installations.

If the remote CA is domain-joined to a domain in the remote forest, the Universal Orchestrator
may be installed on the CA itself or on a separate server joined to a domain in the same forest
(generally a server in the same domain as the CA). Multiple CAs in the same remote forest can be
managed with a single Universal Orchestrator server. However, if the remote CA is not domain-
joined, the Universal Orchestrator must be installed on the remote CA server.

Note: The Universal Orchestrator does not support certificate enrollment for remote
CAs. If you need this capability, you will need to use the Explicit Credentials option in the
Management Portal CA configuration (see Adding or Modifying a CA Record in the
Keyfactor Command Reference Guide).

In addition, two types of custom extensions are supported:

 l Manage and deliver certificates to certificate stores on various platforms and devices using
custom certificate store types and orchestrator jobs in the Keyfactor Command Management
Portal. Custom extensions may be developed by Keyfactor or end users. Keyfactor offers
several publicly available custom extensions for the Universal Orchestrator in the Keyfactor
GitHub:

https://keyfactor.github.io/integrations-catalog/content/orchestrator

11.4 Keyfactor Orchestrators Installation and Configuration Guide 6

https://keyfactor.github.io/integrations-catalog/content/orchestrator

With the custom extensions available from the Keyfactor GitHub, you can manage Windows certi-
ficate stores (IIS), JKS stores, PEM stores, F5 devices, Citrix NetScaler devices, AWS
resources and more (see Installing Custom-Built Extensions on page 68).

For more information about custom extensions, contact your Keyfactor representative.
 l Run custom jobs on the orchestrator that fall outside the standard certificate management tasks.

With custom jobs, you can perform operations locally on the orchestrator—or initiate them
remotely across the network—and then report results back to Keyfactor Command along with
data collected from the jobs, if any.

2.2.1 Preparing for the Universal Orchestrator

This section describes the steps that need to be taken prior to a Keyfactor Universal Orchestrator
installation to install the prerequisites, create the required supporting components, and gather the
necessary information to complete the Universal Orchestrator installation and configuration
process.

2.2.1.1 System Requirements

The Keyfactor Universal Orchestrator is supported on the following operating systems:

 l Windows Server 2019 or Windows Server 2022
 l Oracle Linux 7 or higher
 l Red Hat Enterprise 7 or higher
 l Ubuntu 16 or higher

Note: Older versions of the Universal Orchestrator will work with newer versions of
Keyfactor Command, but not the other way around (see the Compatibility Matrix in the
Keyfactor Command Documentation Suite). The current version of the Universal Orchestrator
requires Keyfactor Command version 10.0 or greater.

Windows Server Requirements

The Universal Orchestrator has the following requirements on Windows.

 l 2GB RAM, 2GHz CPU, 20GB disk space

For optimal performance when using SSL scanning, the server should have at least 16 logical
processors.

 l The orchestrator requires the Microsoft .NET Runtime version 6.0 (x64). Version 6.0 is available
for download from Microsoft:

https://dotnet.microsoft.com/download/dotnet/6.0/runtime

11.4 Keyfactor Orchestrators Installation and Configuration Guide 7

https://dotnet.microsoft.com/download/dotnet/6.0/runtime

You need only the .NET Runtime (x64), not the ASP.NET Core Runtime or ASP.NET Core Hosting
Bundle. At the above link, this would be the Download x64 option under the Run console apps
heading.

Figure 2: Select the Download x64 Option Under Run Console Apps

You can use the following PowerShell command to check the .NET core version(s) installed on a
server (if any):

dotnet --list-runtimes

Output from this command will look something like this if you have the correct 6.0 x64 version of
the .NET Runtime installed (notice the path is in C:\Program Files, not C:\Program Files (x86),
indicating this is the x64 version):

Microsoft.NETCore.App 6.0.11 [C:\Program Files\dotnet\shared\Microsoft.NETCore.App]

 l If you intend to use the orchestrator to manage certificates in remote Windows machine certi-
ficate stores (servers other than the server on which the orchestrator is installed) using the IIS
Certificate Store Manager extension or Java Keystores, PKCS12 files, PEM files, DER files, or
IBM Key Database files on Windows servers with the Remote File Certificate Store Management
extension (see Installing Custom-Built Extensions on page 68), make sure that TCP port 5985 or
5986 is open between the orchestrator and the remote servers (see Configure Windows
Targets for Remote Management on page 63).

 l If you intend to use the orchestrator to manage certificates from remote Microsoft CAs (CAs
outside the forest in which Keyfactor Command is installed or forests in a two-way trust with this

11.4 Keyfactor Orchestrators Installation and Configuration Guide 8

forest), the orchestrator requires the Microsoft Visual C++ 2019 (or later) redistributable for
x64. This is available for download from Microsoft:

https://aka.ms/vs/16/release/vc_redist.x64.exe

The Microsoft Visual C++ Redistributable appears as an application in the Windows Apps &
features.

Linux Server Requirements

The Universal Orchestrator has the following requirements on Linux.

 l 2GB RAM, 2GHz CPU, 20GB disk space

For optimal performance when using SSL scanning, the server should have at least 16 logical
processors.

 l The following applications are required in order to install the Universal Orchestrator on Linux
servers.

Microsoft .NET 6.0 Runtime

The orchestrator requires the Microsoft .NET Runtime version 6.0 (x64). Information about this
is available from Microsoft:

https://docs.microsoft.com/en-us/dotnet/core/install/linux

You need only the .NET Runtime (x64), not the ASP.NET Core Runtime, but it won't hurt
anything to install both the .NET and ASP.NET Core runtimes as suggested in the Microsoft
documentation for installing .NET on Linux.

For the most part, it can be installed via the OS package manager. The method to complete this
varies depending on the Linux operating system. For example, for Ubuntu 20.04, the following
commands will install the correct version of .NET:

wget https://packages.microsoft.com/config/ubuntu/20.04/packages-microsoft-prod.deb
 sudo dpkg -i packages-microsoft-prod.deb
 sudo apt-get update
 sudo apt-get install apt-transport-https
 sudo apt-get install dotnet-runtime-6.0

You can use the following command to check the .NET version installed on a server (if any):

dotnet --list-runtimes

Output from this command will look something like this if you have the correct 6.0 version of
the .NET Runtime installed:

Microsoft.NETCore.App 6.0.6 [/usr/share/dotnet/shared/Microsoft.NETCore.App]

11.4 Keyfactor Orchestrators Installation and Configuration Guide 9

https://aka.ms/vs/16/release/vc_redist.x64.exe
https://docs.microsoft.com/en-us/dotnet/core/install/linux

jq

The orchestrator can only be installed on a Linux server that has jq installed. You can use the
following command to check the jq version of a server:

jq --version

systemd

The orchestrator requires a Linux server that uses the systemd service manager. You can use
the following command to test whether a system is running systemd:

ps -p 1

bash

The orchestrator can only be installed on a Linux server that is running bash version 4.3 or
higher. You can use the following command to check the bash version of a server:

bash --version

curl

The orchestrator can only be installed on a Linux server that has curl installed. You can use the
following command to check the curl version of a server:

curl --version

Linux Container Requirements

The Universal Orchestrator has the following requirements for Linux containers.

 l 2GB RAM, 2GHz CPU, 20GB disk space

For optimal performance when using SSL scanning, the server should have at least 16 logical
processors.

 l The orchestrator needs a containerization solution in which to run. Keyfactor has tested with
Docker and Kubernetes.

Tip: If you have an existing installation of the Universal Orchestrator using the older
Microsoft .NET Runtime version 3.1, you do not need to reinstall the orchestrator to upgrade
the .NET version.
To update your existing Universal Orchestrator to the latest .NET version:

 1. On the Universal Orchestrator machine, browse to locate the Orches-
trator.runtimeconfig.json file in your installation directory. By default, this is:

Windows: C:\Program Files\Keyfactor\Keyfactor
Orchestrator\Orchestrator.runtimeconfig.json
Linux: /opt/keyfactor/orchestrator/Orchestrator.runtimeconfig.json

11.4 Keyfactor Orchestrators Installation and Configuration Guide 10

 2. Using a text editor, open the Orchestrator.runtimeconfig.json file for editing and add the
following property to the runtimeOptions section:

"rollForward": "LatestMajor"

Being sure to add a comma at the end of the previous row, resulting in a final file that
looks something like:

{
 "runtimeOptions": {
 "tfm": "netcoreapp3.1",
 "framework": {
 "name": "Microsoft.NETCore.App",
 "version": "3.1.0"
 },
 "rollForward": "LatestMajor"
 }
}

 3. Save the Orchestrator.runtimeconfig.json file.

 4. Uninstall the Microsoft .NET Runtime version 3.1 (x64) and install the 6.0 version.

 5. Restart the Universal Orchestrator service (see Start the Universal Orchestrator Service
on page 81).

2.2.1.2 Create Service Accounts for the Universal Orchestrator

The Keyfactor Universal Orchestrator makes use of up to two service accounts to allow it to commu-
nicate with the Keyfactor Command server. These two service accounts work together to transfer
information from the Universal Orchestrator to the Keyfactor Command server. The two service
accounts can be thought of as players on two sides of a fence, with the service account that the
Universal Orchestrator runs as lobbing information over the fence to the service account that
communicates with the Keyfactor Command server side to catch and hand to the Keyfactor
Command server. Below, these are referred to as the Universal Orchestrator service account and
the Keyfactor Command connect service account.

The service accounts need to be created prior to installation of the Universal Orchestrator software
(except as noted below for installations on Linux), and the person installing the Universal Orches-
trator software needs to know the domain (if applicable), username and password of each service
account.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 11

Important: Keyfactor highly recommends that you use strong passwords for any accounts or
certificates related to Keyfactor Command and associated products, especially when these
have elevated or administrative access. A strong password has at least 12 characters (more
is better) and multiple character classes (lowercase letters, uppercase letters, numeral, and
symbols). Ideally, each password would be randomly generated. Avoid password re-use.

Universal Orchestrator Service Account

Your choice of service account may vary depending on the operating system on which you are
installing the orchestrator:

Universal Orchestrator on a Windows Server

When the Universal Orchestrator is installed on Windows, you may use either the built-in Network
Service account or a custom service account as the Universal Orchestrator service account.
Keyfactor recommends using the default of Network Service unless you have a need to use a custom
service account. If you choose to use a custom service account, it may be a standard Active
Directory service account, an Active Directory group managed service account (gMSA), or a local
machine account. Of the custom service account choices, an Active Directory account is more typic-
ally used unless the machine is not domain-joined. If you use an Active Directory service account, it
needs to be a service account in the forest in which the Universal Orchestrator is installed. This is
not necessarily the same forest as the forest in which the Keyfactor Command server is installed.
The Universal Orchestrator on Windows has several possible roles, and the choice of service
account may vary depending on these roles:

SSL Management

If your Universal Orchestrator SSL discovery and monitoring, you may choose to run the orches-
trator as the built-in Network Service account or as a custom service account.

CA Management

If your Universal Orchestrator will be providing certificate synchronization from a remote CA, the
Universal Orchestrator service account needs to be able to read the CA(s) in the forest in which
the Universal Orchestrator is installed to retrieve certificates and templates from them. When the
Universal Orchestrator is used in this configuration, this is typically a forest other than the forest
in which the Keyfactor Command server is installed. For domain-joined CAs, you would typically
use an Active Directory service account in the remote forest (the forest where the Universal
Orchestrator is installed). For a non-domain-joined CA, you may use a local account created on the
CA as the Universal Orchestrator service account instead of a domain account.

Custom Extensions

Keyfactor offers several publicly available custom extensions for the Universal Orchestrator in the
Keyfactor GitHub. Many of these will operate correctly with a Universal Orchestrator service
account running as Network Service, but some may require a custom account. Check the specific
documentation for each custom extension for more information:

11.4 Keyfactor Orchestrators Installation and Configuration Guide 12

https://keyfactor.github.io/integrations-catalog/content/orchestrator

The Keyfactor Orchestrator Service on the server on which the Universal Orchestrator is installed
runs as the Universal Orchestrator service account. This service account requires local “Log on as
a service” permissions; this permission is granted automatically during installation.

Universal Orchestrator on a Linux Server

For the purposes of this documentation, it is assumed that Linux machines will be non-domain joined
and will use a local account to run the Universal Orchestrator.

For Linux systems, Keyfactor recommends running the service as an account other than root. The
default Universal Orchestrator service account of keyfactor-orchestrator will be created auto-
matically during the install if the force option is used. If you prefer not to use the force option, you
may create a local service account before running the installation script.

Universal Orchestrator in a Linux Container

This service account is not relevant for the orchestrator run in a container, since the container build
is self-contained.

Keyfactor Command Connect Service Account

For the Keyfactor Command connect service account, the service account you use depends on the
identity provider you’re using:

 l If you’re using Active Directory as an identity provider, a standard Active Directory service
account in the primary Keyfactor Command server forest is used. Group managed service
accounts are not supported in this role.

Tip: If the Universal Orchestrator is installed on Windows in the same forest as the
Keyfactor Command server, the same Active Directory service account may be used as
both the Universal Orchestrator service account and the Keyfactor Command connect
service account, if desired.

 l If you’re using an identity provider other than Active Directory, a client (not user) in the identity
provider is used. The client should be configured with a secret and have Client authentication
and Service account roles enabled (see Using Keyfactor Identity Provider: Service Accounts in
the Keyfactor Command Server Installation Guide). The user installing the orchestrator will need
the client ID and secret.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 13

https://keyfactor.github.io/integrations-catalog/content/orchestrator

Figure 3: Client Secret for Orchestrator Client in Keyfactor Identity Provider

This service account appears in the Management Portal Orchestrator Management grid as the Iden-
tity for the Universal Orchestrator.

Note: The Keyfactor Command connect service account does not need to be granted any
permissions in Keyfactor Command.

Permissions

The user installing the orchestrator must have the SeBackupPrivilege and SeRestorePrivilege rights
on the Keyfactor Universal Orchestrator server. Normally, administrators are granted these permis-
sions by default, but you should confirm the permissions prior to starting the install. These permis-
sions can be set through Group Policy or Local Security Policy, and can be found under Local
Policies\User Rights Assignment as Back up files and directories and Restore files and directories.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 14

Figure 4: Local Security Policy

For more information on this from Microsoft, see:

https://docs.microsoft.com/en-us/windows/win32/api/userenv/nf-userenv-load-
userprofilea#remarks

2.2.1.3 Configure Certificate Root Trust for the Universal Orchestrator

Keyfactor recommends using HTTPS to secure the channel between each Keyfactor Universal
Orchestrator and the Keyfactor Command server(s). This requires an SSL certificate configured in
IIS on the Keyfactor Command server(s). This certificate can either be a publicly-rooted certificate
(e.g. from DigiCert, Entrust, etc.), or one issued from a private certificate authority (CA). If your
Keyfactor Command server is using a publicly rooted certificate, the orchestrator server may
already trust the certificate root for this certificate. However, if you have opted to use an internally-
generated certificate, your orchestrator server may not trust this certificate. In order to use HTTPS
for communications between the orchestrator and the Keyfactor Command server with a certificate
generated from a private CA, you may need to import the certificate chain for the certificate into
either the local machine certificate store on the orchestrator server on Windows or the root certi-
ficate store on Linux.

Note: The CRL(s) for the Keyfactor Command certificate need to be available to the orches-
trator (see Troubleshooting on page 131).

11.4 Keyfactor Orchestrators Installation and Configuration Guide 15

https://docs.microsoft.com/en-us/windows/win32/api/userenv/nf-userenv-loaduserprofilea#remarks
https://docs.microsoft.com/en-us/windows/win32/api/userenv/nf-userenv-loaduserprofilea#remarks

Installations on Windows Servers

If the public key infrastructure (PKI) that issued the certificate has only a root CA, the root certi-
ficate from this CA must be installed in the Trusted Root Certification Authorities store under Local
Computer on the orchestrator server. If the PKI that issued the certificate has both a root and
issuing CA, the root certificate must be installed in the Trusted Root Certification Authorities store
under Local Computer on the orchestrator server and the issuing CA certificate must be installed in
the Intermediate Certification Authorities store under Local Computer on the orchestrator server.

Installations on Linux Servers and in Linux Containers

The location of the OpenSSL trusted root store varies depending on your Linux implementation. The
root certificate must be installed in the appropriate location for the operating system before begin-
ning the installation.

2.2.1.4 Grant the Orchestrator Service Account Permissions on the CAs

This step only needs to be completed if you plan to use the Keyfactor Universal Orchestrator for
remote Microsoft CA synchronization.

In order for the Universal Orchestrator to be able to synchronize certificates from the remote
Microsoft CA(s) to the Keyfactor Command database, the Universal Orchestrator service account—
the identity under which the orchestrator in the remote forest runs—must have permissions to read
the CA database(s) in the remote forest.

In the management console for each CA that the orchestrator will interact with, open the properties
for the CA and grant the service account that the orchestrator runs as (see Create Service
Accounts for the Universal Orchestrator on page 11) read permissions before continuing.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 16

Figure 5: CA Permissions

11.4 Keyfactor Orchestrators Installation and Configuration Guide 17

2.2.1.5 Acquire a Certificate for Client Certificate Authentication (Optional)

The Keyfactor Universal Orchestrator supports client certificate authentication to allow you to
authenticate via client certificates from individual orchestrator machines to either a centralized
proxy, such as a network load balancer, which would in turn authenticate to the Keyfactor Command
server using either a username and password or client ID and secret that was stored securely on the
proxy or another client certificate, or directly using IIS on the Keyfactor Command to manage the
certificate authentication and Active Directory to manage the mapping of client certificates to
service accounts. The proxy approach allows orchestrator credentials to be assigned and managed
outside the Active Directory forest in which Keyfactor Command is installed. The web proxy's job is
to confirm the validity of the certificate and to provide Active Directory or an identity provider other
than Active Directory credentials known to Keyfactor Command (if configured in this manner). Typic-
ally the proxy would be configured to accept all certificates issued from a given PKI implementation—
even a PKI that is unknown to the Keyfactor Command Active Directory forest—thus delegating
orchestrator access control to that PKI. For more information, see:

 l Appendix - Set up the Universal Orchestrator to Use Client Certificate Authentication via a
Reverse Proxy: Citrix ADC on page 151

 l Appendix - Set up the Universal Orchestrator to Use Client Certificate Authentication with Certi-
ficates Stored in Active Directory on page 164

Important: The Universal Orchestrator supports automated client certificate renewal using
an extension point interface on the orchestrator that can be implemented by the end-user.
The custom extension will generate a CSR with private key and submit the CSR to Keyfactor
Command for enrollment. Keyfactor Command will return the certificate to the orchestrator,
which will pair it with its private key and use that certificate for authentication. See Register a
Client Certificate Renewal Extension on page 89 for more information.

Note: Client certificate authentication is not supported when using the Universal Orches-
trator installed in a Linux container (see Install the Universal Orchestrator in a Linux
Container on page 50).

There are several situations in which using certificate authentication for the Universal Orchestrator
may be helpful, including:

 l Scale—To allow orchestrator numbers to scale (e.g. the IoT case) where it isn't practical to have
a unique Active Directory account for each orchestrator.

 l Untrusted Environments—To support environments (e.g. a “hostile” network) where policy
doesn't allow the password for an Active Directory account to be stored on the orchestrator.

The certificate that the Universal Orchestrator uses for authentication needs:

11.4 Keyfactor Orchestrators Installation and Configuration Guide 18

 l An extended key usage (EKU) of Client Authentication

Figure 6: Microsoft Certificate Template Application Policies for Client Authentication Certificate

11.4 Keyfactor Orchestrators Installation and Configuration Guide 19

 l A key usage that includes Digital Signature

Figure 7: Microsoft Certificate Template Request Handling for Client Authentication Certificate

On Windows servers, the certificate may be referenced either as a PKCS12 file stored in the file
system or may be place either in the local machine's personal store (My), or, if you opt to run the
Universal Orchestrator service as a domain service account rather than the default of Network
Service, in the personal store of the Universal Orchestrator service account user. If you opt to place
the certificate in the local machine store, you need to grant the service account under which the
Universal Orchestrator service will run (including Network Service if you will use this option) read
permissions to the private key of the certificate. If you opt to place the certificate in the personal
store of the Universal Orchestrator service account user, it also needs to be placed in the personal
store of the user running the installation for the duration of the installation to allow it to be read
during initial configuration. It may be removed from the installing user's store after installation is
complete.

On Linux servers, the certificate is referenced as a PKCS12 file stored in the file system.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 20

Important: Keyfactor highly recommends that you use strong passwords for any accounts or
certificates related to Keyfactor Command and associated products, especially when these
have elevated or administrative access. A strong password has at least 12 characters (more
is better) and multiple character classes (lowercase letters, uppercase letters, numeral, and
symbols). Ideally, each password would be randomly generated. Avoid password re-use.

To acquire a certificate for use by the Universal Orchestrator using a Microsoft CA, first create a
template using the appropriate configurations as described above and make it available for enroll-
ment on the CA from which you will request the certificate. The simplest way to acquire a certificate
as a PKCS12 file for either Linux or Windows use is with PFX enrollment in Keyfactor Command.
There are multiple ways to acquire a certificate and place it in the machine store on the Windows
server where the Universal Orchestrator will be installed, including:

 l Enroll through the Microsoft certificates MMC.
 l Generate a CSR through the Microsoft certificates MMC and take the CSR to Keyfactor

Command to issue a certificate using the CSR enrollment option in the Keyfactor Command
Management Portal. You will need to return to the Microsoft certificates MMC to marry the certi-
ficate with the private key.

 l Enroll for a certificate through Keyfactor Command using the PFX enrollment method and deploy
it to the certificate store using an already installed Universal Orchestrator managing the store as
an IIS store.

 l Enroll using the command-line certreq command with a request.inf file on the Universal Orches-
trator server.

Several of the above methods can also be used if you opt to enroll into the Universal Orchestrator
service account user's personal store, though this option requires a few extra steps.

To enroll for a certificate using the certificates MMC into the local machine store:

 1. On the Universal Orchestrator machine, do one of following:
 l Using the GUI:

 a. Open an empty instance of the Microsoft Management Console (MMC).

 b. Choose File->Add/Remove Snap-in….

 c. In the Available snap-ins column, highlight Certificates and click Add.

 d. In the Certificates snap-in popup, choose the radio button for Computer account, click
Next, accept the default of Local computer, and click Finish.

 e. Click OK to close the Add or Remove Snap-ins dialog.

 l Using the command line:

 a. Open a command prompt using the “Run as administrator” option.

 b. Within the command prompt type the following to open the certificates MMC:
certlm.msc

11.4 Keyfactor Orchestrators Installation and Configuration Guide 21

 2. Drill down to the Personal folder under Certificates for the Local Computer, right-click, and
choose All Tasks->Request New Certificate….

 3. Follow the certificate enrollment wizard, selecting the template you created or identified for use
for this purpose, and providing any required information.

 4. When the enrollment completes, locate the certificate in the Personal store (you may need to
refresh), highlight it, and choose All Tasks->Manage Private Keys….

 5. In the Permissions for private keys dialog, click Add, add the Universal Orchestrator service
account—the account under which the Universal Orchestrator is running (created as per Create
Service Accounts for the Universal Orchestrator on page 11)—and grant that service account
Read but not Full control permissions. Click OK to save.

2.2.1.6 Upgrading the Universal Orchestrator

There are two possible paths for upgrading from an earlier implementation of the Keyfactor Universal
Orchestrator to a newer implementation:

 l If your newer orchestrator will be installed in the same path as the older orchestrator, you may
install the newer orchestrator over the older orchestrator using the -Force (Windows) or --force
(Linux) option to overwrite the existing implementation.

 l You may uninstall the older implementation using the provided uninstall script (uninstall.ps1 on
Windows or uninstall.sh on Linux) and install the newer version using the standard installation
steps (see Install the Universal Orchestrator on Windows on page 25 or Install the Universal
Orchestrator on a Linux Server on page 40).

If you have an existing instance of the Keyfactor Windows Orchestrator and wish to migrate to the
Keyfactor Universal Orchestrator, you may either install the two orchestrators side-by-side and then
uninstall the Keyfactor Windows Orchestrator or uninstall the Keyfactor Windows Orchestrator and
then install the Keyfactor Universal Orchestrator.

Important: Before following any of these upgrade paths, be sure to save off a copy of any
custom extensions for the Keyfactor Universal Orchestrator (found in C:\Program Files\Key-
factor\Keyfactor Orchestrator\extensions by default) or plugins for the Keyfactor Windows
Orchestrator (found in C:\Program Files\Keyfactor\Keyfactor Windows Orchestrator\plugins
by default).

Keyfactor’s suggested upgrade process is:

 1. Review your installed orchestrator and gather this information:

 l Is this a Windows Orchestrator or a Universal Orchestrator?

There are a number of ways to tell the difference. For example, the default install directory
for the Universal Orchestrator is Keyfactor Orchestrator which the default install
directory for the Windows Orchestrator is Keyfactor Windows Orchestrator. The
Universal Orchestrator has several subdirectories, including an extensions directory. The
Keyfactor Windows Orchestrator has only one subdirectory—plugins—by default.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 22

 l What user account is being used to run the orchestrator service?

To check this, you can open the Windows Services tool (services.msc), look for the
Keyfactor Orchestrator Service, and check the account that’s configured as the Log On
As.

 l If this installation is on Windows, is the user account being used to run the orchestrator
service a group managed service account (gMSA)?

 l What type of authentication is being used to make the connection to Keyfactor Command?

To check this, you can open the appsettings.json configuration file, which is found in the
following location by default:

Windows: C:\Program Files\Keyfactor\Keyfactor Orchestrator\con-
figuration\appsettings.json

Linux: /opt/keyfactor/orchestrator/configuration/appsettings.json

If you’re using client certificate authentication, the CertPath and AuthCertThumbprint
fields will be populated. If you’re using token authentication, the BearerTokenUrl and
ClientId fields will be populated. If none of the aforementioned fields are populated, you’re
using Basic authentication.

 l What user account, client ID, or other authentication information is being used to make the
connection to Keyfactor Command?

Check in Keyfactor Command for the Identity that the orchestrator indicates on the
Orchestrator Management page.

 l What secret information (user password, client secret, etc.) is used to make the connec-
tion to Keyfactor Command?

This information cannot be retrieved from your existing installation. It is stored in an
encrypted state.

 l What plugins (Windows Orchestrator) or extensions (Universal Orchestrator) are you
using?

The plugins for the Keyfactor Windows Orchestrator are found in C:\Program Files\Key-
factor\Keyfactor Windows Orchestrator\plugins by default. The extensions for the
Keyfactor Universal Orchestrator are found in C:\Program Files\Keyfactor\Keyfactor
Orchestrator\extensions by default.

 2. If you're using plugins or extensions:

 a. Before beginning the upgrade, save off a copy of any existing plugins or extensions in use.

 b. If you’re using plugins or extensions from the Keyfactor Git Hub, check for the latest version:

https://keyfactor.github.io/integrations-catalog/content/orchestrator

Plugins for the Keyfactor Windows Orchestrator are not compatible with the Keyfactor
Universal Orchestrator, so check for extensions that replace your plugins.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 23

https://keyfactor.github.io/integrations-catalog/content/orchestrator

 c. Review the documentation of each extension you will be using to determine if there are any
changes needed to the certificate store type definition in Keyfactor Command. Only the
following fields in a certificate store type that’s in use may be edited:

 l Name
 l Short Name
 l Supported Job Types
 l Entry Parameters

If changes to any other fields of the certificate store type are needed, you will need to
create a new certificate store type.

 d. Create new certificate store types or edit existing certificate store types as needed (see
the previous step). If you’re creating a new certificate store type to replace an existing one,
it cannot have the same Short Name as an existing certificate store type. This means that
you will most likely be using a non-standard Short Name for your extension (e.g. CitrixAdc2)
and will need to modify the extension configuration to point it to the correct certificate store
type. To do this, in the directory for your extension (the version that you will later copy into
the upgraded orchestrator’s directory), locate the manifest.json file and open it for editing.
Change the existing capability to map to your new certificate store type(s). For example,
CitrixAdc becomes CitrixAdc2:

{
 "extensions": {
 "Keyfactor.Orchestrators.Extensions.IOrchestratorJobExtension": {
 "CertStores.CitrixAdc2.Inventory": {
 "assemblypath": "Keyfactor.Extensions.Orchestrator.CitricAdc.dll",
 "TypeFullName": "Keyfactor.Ex-
tensions.Orchestrator.CitricAdc.Inventory"
 },
 "CertStores.CitrixAdc2.Management": {
 "assemblypath": "Keyfactor.Extensions.Orchestrator.CitricAdc.dll",
 "TypeFullName": "Keyfactor.Ex-
tensions.Orchestrator.CitricAdc.Management"
 }
 }
 }
}

 3. Install the new Universal Orchestrator, either uninstalling the previous version or installing over
the previous version using the -force option, following the standard installation steps (see Install
the Universal Orchestrator on Windows on the next page, Install the Universal Orchestrator on a
Linux Server on page 40, or Install the Universal Orchestrator in a Linux Container on page 50)
and referencing the information you gathered in step 1. If you’re installing in a container, you’ll

11.4 Keyfactor Orchestrators Installation and Configuration Guide 24

need to stage your selected extensions as part of the install.

 4. If you’re using extensions and didn’t install in a container, copy your extensions into the exten-
sions directory of the new orchestrator (see Installing Custom-Built Extensions on page 68).
Restart the orchestrator service to pick up the extension changes.

 5. In the Keyfactor Command Management Portal, review the orchestrator, confirm that the capab-
ilities are as expected, and approve the orchestrator.

 6. If you’re using extensions and added a new certificate store type, you will need to recreate your
certificate store. The certificate store type associated with a certificate store cannot be edited.
Review your current certificate stores and recreate them with the new certificate store type,
and then delete the versions with the old certificate store type.

 7. Confirm that your certificate stores and/or SSL scanning are functioning as expected.

2.2.2 Install the Universal Orchestrator on Windows

To install the Keyfactor Universal Orchestrator on Windows, copy the zip file containing installation
files to a temporary working directory on the Windows server and unzip it.

Note: In some instances, downloading a compressed file on Windows can cause the file to be
marked as blocked. If you unzip a blocked file and proceed with the installation, the install-
ation may fail with an error about missing files or dependencies (e.g. “Could not load file or
assembly [filename] or one of its dependencies...”). Before beginning the installation, check
the zip file before unzipping it to confirm that it is not blocked and unblock it if it is blocked.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 25

Figure 8: Installation Files Blocked after Download

To begin the installation:

 1. On the Windows machine on which you wish to install the orchestrator, open a PowerShell
window using the “Run as Administrator” option and change to InstallationScripts subdirectory
under the temporary directory where you placed the installation files.

 2. In the PowerShell window, select from the following commands to run based on the identity
provider you’re using for Keyfactor Command, the desired orchestrator service accounts, and
the desired install experience to prepare for the install.

In these examples, credKeyfactor is used for the Keyfactor Command connect service account
that the orchestrator uses to connect to Keyfactor Command and credService is used for the
Universal Orchestrator service account that the service runs as. Usernames should be given in
DOMAIN\username format for Active Directory domain accounts or hostname\username format
for local user accounts.

 l If you’re using Active Directory as an identity provider, will be running the service as an
Active Directory domain or local account rather than Network Service, and do not want to
provide the usernames and passwords in the command, run the following commands to
populate a variable with the user credentials for the Keyfactor Command connect service
account (see Create Service Accounts for the Universal Orchestrator on page 11) and
populate a variable with the user credentials for the Universal Orchestrator service
account:

11.4 Keyfactor Orchestrators Installation and Configuration Guide 26

$credKeyfactor = Get-Credentials
$credService = Get-Credential

Enter the appropriate username and password when prompted.
 l Active Directory as the identity provider, running the service as Network Service, and not

providing the username and password for the Keyfactor Command connect service
account in the command:

$credKeyfactor = Get-Credential

 l Active Directory as the identity provider, running the service as Network Service, and
providing the username and password for the Keyfactor Command connect service
account in the command:

$keyfactorUser = "DOMAIN\mykeyfactorconnectusername"
$keyfactorPassword = "MySecurePassword"
$secKeyfactorPassword = ConvertTo-SecureString $keyfactorPassword -AsPlainText -
Force
$credKeyfactor = New-Object System.Management.Automation.PSCredential ($key-
factorUser, $secKeyfactorPassword)

 l Active Directory as the identity provider, running the service as a domain or local account,
and providing the username and password for the Keyfactor Command connect service
account and the service account the orchestrator runs as in the command:

$serviceUser = "DOMAIN\myserviceusername"
$keyfactorUser = "DOMAIN\mykeyfactorconnectusername"
$keyfactorPassword = "MyFirstSecurePassword"
$servicePassword = "MySecondSecurePassword"
$secKeyfactorPassword = ConvertTo-SecureString $keyfactorPassword -AsPlainText -
Force
$secServicePassword = ConvertTo-SecureString $servicePassword -AsPlainText -
Force
$credKeyfactor = New-Object System.Management.Automation.PSCredential ($key-
factorUser, $secKeyfactorPassword)
$credService = New-Object System.Management.Automation.PSCredential ($ser-
viceUser, $secServicePassword)

 l Active Directory as the identity provider, running the service as a group managed service
account (gMSA), and providing the username and password for the Keyfactor Command

11.4 Keyfactor Orchestrators Installation and Configuration Guide 27

connect service account in the command:

$serviceUser = "DOMAIN\myGMSAserviceusername$"
$keyfactorUser = "DOMAIN\mykeyfactorconnectusername"
$keyfactorPassword = "MySecurePassword"
$secKeyfactorPassword = ConvertTo-SecureString $keyfactorPassword -AsPlainText -
Force
$credKeyfactor = New-Object System.Management.Automation.PSCredential ($key-
factorUser, $secKeyfactorPassword)
$credService = New-Object System.Management.Automation.PSCredential ($ser-
viceUser,(New-Object System.Security.SecureString))

Note: Group managed service accounts are not supported for use in making the
connection to Keyfactor Command.

 l An identity provider other than Active Directory and running the service as Network
Service:

none

 l An identity provider other than Active Directory, running the service as a domain or local
account, and not providing the username and password for the service account the
orchestrator runs as in the command:

$credService = Get-Credential

 l An identity provider other than Active Directory, running the service as a domain or local
account, and providing the username and password for the service account the orches-
trator runs as in the command:

$serviceUser = "DOMAIN\myserviceusername"
$servicePassword = "MySecondSecurePassword"
$secServicePassword = ConvertTo-SecureString $servicePassword -AsPlainText -
Force
$credService = New-Object System.Management.Automation.PSCredential ($ser-
viceUser, $secServicePassword)

Tip: In some cases, you may be using the same service account for both the Universal
Orchestrator service account role and the Keyfactor Command connect service account
role. If this is the case, you may use a single variable for both passwords in the next step.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 28

 3. In the PowerShell window, run the install.ps1 script using the following syntax to begin the install-
ation:

-URL (Required)

This is the URL to the Agent Services endpoint on the Keyfactor Command server running the
Keyfactor Command Agent Services role. If you installed all the Keyfactor Command server
roles together, this is the URL for your Keyfactor Command server with /KeyfactorAgents after
the server's IP or FQDN (e.g. https://keyfactor.keyexample.com/KeyfactorAgents). If you
choose to use SSL to connect to the Keyfactor Command server, you’ll need to enter a URL that
contains a hostname that is found in the SSL certificate.

This parameter sets the local orchestrator application setting AgentsServerUri to the specified
value.

This parameter is required.

Note: If you've opted to use client certificate authentication for the orchestrator, the
value you use for the URL will vary depending on the method you select to implement
client certificate authentication. You may choose to route client certificate authen-
tication through a proxy (see Appendix - Set up the Universal Orchestrator to Use Client
Certificate Authentication via a Reverse Proxy: Citrix ADC on page 151), in which case
you would use the proxy server name here (whatever name you're using to route traffic
through the proxy). You may choose to publish client certificates to Active Directory and
access the Keyfactor Command server directly (see Appendix - Set up the Universal
Orchestrator to Use Client Certificate Authentication with Certificates Stored in Active
Directory on page 164), in which case you would use the Keyfactor Command server
name here.

Tip: If your Keyfactor Command server was configured with an alternate virtual directory
for the Keyfactor Command Agents Services endpoint, you will need to enter that in the
URL rather than /KeyfactorAgents.

Client Authentication Parameters (Required)

The Keyfactor Universal Orchestrator supports authenticating to the Keyfactor Command
server using Basic authentication, token authentication, or client certificate authentication. The
method you choose depends in part on the identity provider in use for the Keyfactor Command
the orchestrator will be communicating with. If you’re using Active Directory as an identity
provider, you may choose Basic authentication or client certificate authentication. If you’re
using an identity provider other than Active Directory, you may choose token authentication or
client certificate authentication.

When you configure the orchestrator with Basic authentication (WebCredential), you provide a
username and password as a PSCredential object. With token authentication (BearerTokenUrl),

11.4 Keyfactor Orchestrators Installation and Configuration Guide 29

you provide a client ID and secret that allows the orchestrator to acquire a bearer token. With
client certificate authentication (either ClientCertificateThumbprint or ClientCertificate and
ClientCertificatePassword), the orchestrator uses a client certificate to authenticate to either a
proxy or IIS on the Keyfactor Command server. You cannot configure multiple types of authen-
tication together.

One of the following authentication methods is required:

 l Basic Authentication: WebCredential
 l Token Authentication: BearerTokenUrl, ClientId, ClientSecret, and TokenLifetime
 l Client Certificate Authentication: ClientCertificate and ClientCertificatePassword
 l Client Certificate Authentication: ClientCertificateThumbprint

Important: Choosing a client certificate authentication method for the orchestrator may
require additional configuration on your Keyfactor Command server. For more inform-
ation, see Appendix - Set up the Universal Orchestrator to Use Client Certificate
Authentication with Certificates Stored in Active Directory on page 164, Appendix - Set
up the Universal Orchestrator to Use Client Certificate Authentication via a Reverse
Proxy: Citrix ADC on page 151, and Install the Keyfactor Command Components on the
Keyfactor Command Server(s) in the Keyfactor Command Server Installation Guide.

Tip: For information about rotating passwords and client authentication certificates, see
Change Service Account Passwords on page 82.

-WebCredential (Basic Authentication)

This is the credential object of the Keyfactor Command connect service account that the
orchestrator uses to communicate with Keyfactor Command that you created as per Create
Service Accounts for the Universal Orchestrator on page 11. It is provided as a PSCredential
object.

This parameter is required if Basic authentication will be used.

This parameter cannot be used in conjunction with the BearerTokenURL, ClientCer-
tificateThumbprint, ClientCertificate, or ClientCertificatePassword parameter.

-BearerTokenURL (Token Authentication)

Specifying this parameter causes the installation to be done using token authentication for the
connection to Keyfactor Command.

This parameter requires that ClientId and ClientSecret also be specified.

This parameter is required if token authentication will be used.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 30

This parameter cannot be used in conjunction with the WebCredential, ClientCer-
tificateThumbprint, ClientCertificate, or ClientCertificatePassword parameter.

-ClientId (Token Authentication)

This parameter is used to specify the ID of the identity provider client that should be used to
authenticate the session when BearerTokenUrl authentication is used (see Create Service
Accounts for the Universal Orchestrator on page 11).

This parameter requires that ClientSecret also be specified.

This parameter is only supported if the BearerTokenUrl parameter is specified.

-ClientSecret (Token Authentication)

This parameter is used to specify the secret of the identity provider client that should be used
to authenticate the session when BearerTokenUrl authentication is used.

This parameter requires that ClientId also be specified.

This parameter is only supported if the BearerTokenUrl parameter is specified.

-TokenLifetime (Token Authentication)

The number of seconds for which the bearer token is valid. If not specified, the orchestrator
uses the default value set by the Keyfactor Command server of 300 seconds (5 minutes).

This parameter requires that ClientId and ClientSecret also be specified.

This parameter is only supported if the BearerTokenUrl parameter is specified.

The TokenLifetime is optional.

-ClientCertificate (Client Certificate Authentication)

The path and file name on the orchestrator of a PKCS12 file containing the client authen-
tication certificate used to authenticate to Keyfactor Command created as per Acquire a Certi-
ficate for Client Certificate Authentication (Optional) on page 18. The certificate must have a
Client Authentication EKU.

The account under which the Universal Orchestrator service will run (see -ServiceCredential
on page 35) needs read and write permissions on the PKCS12 file you specify with this para-
meter.

This parameter requires that ClientCertificatePassword also be specified.

You may specify either the thumbprint of the certificate with the ClientCertificateThumbprint
parameter or specify a path and password to a PKCS12 file containing the certificate on the

11.4 Keyfactor Orchestrators Installation and Configuration Guide 31

orchestrator using ClientCertificate and ClientCertificatePassword. You do not need to
specify both a thumbprint and a PKCS12 file; if you do, the certificate stores will take preced-
ence.

Specifying this parameter sets the local orchestrator application setting CertPath to the
specified value.

This parameter cannot be used in conjunction with the BearerTokenURL or WebCredential
parameter.

-ClientCertificatePassword (Client Certificate Authentication)

The password for the PKCS12 file specified with the ClientCertificate parameter.

Specifying this parameter requires that ClientCertificate also be specified.

This parameter cannot be used in conjunction with the BearerTokenURL or WebCredential
parameter.

-ClientCertificateThumbprint (Client Certificate Authentication)

The thumbprint of the client authentication certificate used to authenticate to Keyfactor
Command created as per Acquire a Certificate for Client Certificate Authentication (Optional)
on page 18. The certificate must have a Client Authentication EKU, have a private key read-
able by the account under which the Universal Orchestrator service will run (see -ServiceCre-
dential on page 35), and be located in either the orchestrator local machine's personal
certificate store (My) or the Universal Orchestrator service account user's (see -ServiceCre-
dential on page 35) personal certificate store. If the certificate is stored in the local machine's
store, the Universal Orchestrator service account user must be granted permissions to read
the private key of the certificate (see the final steps under Acquire a Certificate for Client
Certificate Authentication (Optional) on page 18).

You may specify either the thumbprint of the certificate with the ClientCertificateThumbprint
parameter or specify a path and password to a PKCS12 file containing the certificate on the
orchestrator using ClientCertificate and ClientCertificatePassword. You do not need to
specify both a thumbprint and a PKCS12 file; if you do, the certificate stores will take preced-
ence.

Specifying this parameter sets the local orchestrator application setting AuthCertThumbprint
to the specified value.

This parameter cannot be used in conjunction with the BearerTokenURL or WebCredential
parameter.

-Audience

This parameter is used to specify an audience value to be included in token requests delivered
to the identity provider when using an identity provider other than Active Directory.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 32

-Capabilities

This parameter is used to specify the capabilities the orchestrator will support if a capability set
other than the default set is desired. Supported options are:

 l all

All the capabilities supported by the orchestrator will be enabled and reported to
Keyfactor Command.

 l none

The orchestrator will be installed with no capabilities and will not be registered with
Keyfactor Command. This is primarily used for implementations that will support only
custom capabilities (see Installing Custom-Built Extensions on page 68 and Configuring
Script-Based Certificate Store Jobs on page 74).

 l ssl

Only the SSL discovery and monitoring capability will be enabled and reported to
Keyfactor Command.

If the InPlace parameter is specified, this parameter must be set to all.

If this parameter is not specified, the default set of capabilities for the orchestrator will be used.
For the Universal Orchestrator, the default capability set is IIS, CA and LOG (log fetching).

One installation of the orchestrator can be enabled with multiple capabilities to perform more
than one function, but there are best practices for locating orchestrators that should be
considered. For example, Keyfactor recommends against performing the SSL discovery and
monitoring function using an orchestrator installed on the main Keyfactor Command server due
to the resource requirements of this function and against using the same orchestrator for the
SSL function and other functions, again due to the resource requirements. The CA management
function is typically used on remote servers and not collocated with other orchestrator func-
tions.

-Destination

This parameter specifies a location in which to install the orchestrator that is other than the
default. The default installation location is:

C:\Program Files\Keyfactor\Keyfactor Orchestrator

This parameter cannot be used in conjunction with the InPlace parameter.

-Force

Specifying this parameter causes the installation to warn and continue on certain potential prob-
lems, including:

 l A service with either the default service name or the service name specified with the
ServiceSuffix parameter already exists. The service will be overwritten if Force is

11.4 Keyfactor Orchestrators Installation and Configuration Guide 33

specified.
 l Either the default installation location or the location specified with the Location para-

meter is not empty. The install will occur to the specified or default location anyway and
files may be overwritten if Force is specified.

If this parameter is not specified and any of these problems are encountered, the installation will
terminate prematurely.

-InPlace

This parameter is used to indicate that the installation should occur in the current directory
where the install files are located and no files should be copied to another location on the
machine.

This parameter cannot be used in conjunction with the Destination parameter. This parameter is
only supported if the Capabilities parameter is set to all.

-NoRevocationCheck

This parameter is used to indicate that the revocation status (CRL) of the SSL certificate on the
Keyfactor Command server should not be checked when connecting to Keyfactor Command.

Specifying this parameter sets the local orchestrator application setting Check-
ServerCertificateRevocation to false. The default for this parameter is true (CRL checking will
be done).

-NoService

This parameter is used to indicate that no Windows service should be created. The orchestrator
will be installed but will need to be started manually or added as a service at a later time.

This parameter cannot be used in conjunction with the ServiceSuffix or ServiceCredential para-
meter.

-OrchestratorName

Specifying this parameter allows you to override the name the orchestrator would by default use
to register itself in Keyfactor Command.

Specifying this parameter sets the local orchestrator application setting OrchestratorName to
the specified value.

By default, the orchestrator uses the value of the COMPUTERNAME environment variable for
the orchestrator's name.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 34

-ServiceCredential

This is the credential object of the Universal Orchestrator service account the orchestrator
service will run as (see Create Service Accounts for the Universal Orchestrator on page 11. It is
provided as a PSCredential object.

This parameter cannot be used in conjunction with the NoService parameter.

If this parameter is not specified, the built-in Network Service account will be used.

-ServiceSuffix

This parameter is used to add a suffix to the root service name of KeyfactorOrchestrator (e.g.
Instance1 for a resulting service name of KeyfactorOrchestrator-Instance1). This is used
primarily for implementations where the orchestrator will be installed multiple times on the same
server.

This parameter cannot be used in conjunction with the NoService parameter.

If this parameter is not specified, the default service name of KeyfactorOrchestrator-Default will
be used—with a display name of Keyfactor Orchestrator Service (Default).

-Scope

This parameter is used to specify one or more scopes that should be included in token requests
delivered to the identity provider when using an identity provider other than Active Directory.
Multiple scopes should be separated by spaces.

-Source

Specify this parameter to point to a directory containing the installation files other than the
directory in which the install.ps1 file is found. This parameter is used primarily if a copy of the
install.ps1 file is made in an alternate directory, updated with some customizations, and then
used for installation without being copied back to the directory where the remaining installation
files are located.

Installation example with expected output using Basic authentication and Network Service to
run the local service:

$keyfactorUser = "KEYEXAMPLE\svc_kyforch1"
$keyfactorPassword = "MySecurePassword123!"
$secKeyfactorPassword = ConvertTo-SecureString $keyfactorPassword -AsPlainText -Force
$credKeyfactor = New-Object System.Management.Automation.PSCredential ($keyfactorUser,
$secKeyfactorPassword)

.\install.ps1 -URL https://keyfactor.keyexample.com/KeyfactorAgents -WebCredential

11.4 Keyfactor Orchestrators Installation and Configuration Guide 35

$credKeyfactor -OrchestratorName websrvr42.keyexample.com -Capabilities all

Copying files
Setting configuration data
Installing Windows Service
Granting necessary file permissions to NT AUTHORITY\NETWORK SERVICE for configuration
file
Starting service KeyfactorOrchestrator-Default

Installation example with expected output using Basic authentication and a standard Active
Directory service account to run the local service:

$serviceUser = "KEYEXAMPLE\svc_kyforch1"
$keyfactorUser = "KEYEXAMPLE\svc_kyforch2"
$servicePassword = "MyFirstSecurePassword123!"
$keyfactorPassword = "MySecondSecurePassword456#"
$secServicePassword = ConvertTo-SecureString $servicePassword -AsPlainText -Force
$secKeyfactorPassword = ConvertTo-SecureString $keyfactorPassword -AsPlainText -Force
$credService = New-Object System.Management.Automation.PSCredential ($serviceUser,
$secServicePassword)
$credKeyfactor = New-Object System.Management.Automation.PSCredential ($keyfactorUser,
$secKeyfactorPassword)

.\install.ps1 -URL https://keyfactor.keyexample.com/KeyfactorAgents -WebCredential
$credKeyfactor -ServiceCredential $credService -OrchestratorName websrvr42-
IIS.keyexample.com -Capabilities all

Copying files
Setting configuration data
Installing Windows Service
Granting necessary file permissions to KEYEXAMPLE\svc_kyforch1 for configuration file
Granting Log on as a Service permission to KEYEXAMPLE\svc_kyforch1
Starting service KeyfactorOrchestrator-Default

Installation example with expected output using Basic authentication and an Active Directory
gMSA to run the local service:

$serviceUser = "KEYEXAMPLE\GMSA_kyforch$"
$keyfactorUser = "KEYEXAMPLE\svc_kyforch"
$keyfactorPassword = "MySecurePassword123!"
$secKeyfactorPassword = ConvertTo-SecureString $keyfactorPassword -AsPlainText -Force

11.4 Keyfactor Orchestrators Installation and Configuration Guide 36

$credService = New-Object System.Management.Automation.PSCredential ($serviceUser,
(New-Object System.Security.SecureString))
$credKeyfactor = New-Object System.Management.Automation.PSCredential ($keyfactorUser,
$secKeyfactorPassword)

.\install.ps1 -URL https://keyfactor.keyexample.com/KeyfactorAgents -WebCredential
$credKeyfactor -ServiceCredential $credService -OrchestratorName websrvr42-
IIS.keyexample.com -Capabilities all

Copying files
Setting configuration data
Installing Windows Service
Granting necessary file permissions to KEYEXAMPLE\GMSA_kyforch$ for configuration file
Granting Log on as a Service permission to KEYEXAMPLE\GMSA_kyforch$
Starting service KeyfactorOrchestrator-Default

Important: Prior to using a gMSA in the installation, you need to have installed the
account on the Universal Orchestrator server using the Install-ADServiceAccount Power-
Shell command. For example:

Install-ADServiceAccount -Identity GMSA_kyforch$

This requires the Active Directory module for Windows PowerShell, which is installed as a
feature as part of the Remote Server Administrator Tools.

Installation example with expected output using token authentication and Network Service to
run the local service:

.\install.ps1 -URL https://keyfactor.keyexample.com/KeyfactorAgents -BearerTokenUrl
https://appsrvr18.keyexample.com:1443/realms/Keyfactor/protocol/openid-connect/token -
ClientId Universal-Orchestrator -ClientSecret m1aE6RErW5cezSPmv0PJcFdFp152HFqK -Orches-
tratorName websrvr42-UO.keyexample.com -Capabilities all

Copying files
Setting configuration data
Installing Windows Service
Granting necessary file permissions to NT AUTHORITY\NETWORK SERVICE for configuration
file
Starting service KeyfactorOrchestrator-Default

11.4 Keyfactor Orchestrators Installation and Configuration Guide 37

Installation example with expected output using token authentication and a local account on the
machine to run the local service:

$serviceUser = "websrvr42\kyforch"
$servicePassword = "MySecurePassword123!"
$secServicePassword = ConvertTo-SecureString $servicePassword -AsPlainText -Force
$credService = New-Object System.Management.Automation.PSCredential ($serviceUser,
$secServicePassword)

.\install.ps1 -URL https://keyfactor.keyexample.com/KeyfactorAgents -BearerTokenUrl
https://appsrvr18.keyexample.com:1443/realms/Keyfactor/protocol/openid-connect/token -
TokenLifetime 150 -ClientId Universal-Orchestrator -ClientSecret m1aE6RErW5cezSPm-
v0PJcFdFp152HFqK -ServiceCredential $credService -OrchestratorName websrvr42-
UO.keyexample.com -Capabilities all

Copying files
Setting configuration data
Installing Windows Service
Granting necessary file permissions to websrvr42\kyforch for configuration file
Granting Log on as a Service permission to websrvr42\kyforch
Starting service KeyfactorOrchestrator-Default

Installation example with expected output using client certificate authentication with the certi-
ficate stored in the local machine store:

$serviceUser = "KEYEXAMPLE\svc_kyforch"
$servicePassword = "MySecurePassword123!"
$secServicePassword = ConvertTo-SecureString $servicePassword -AsPlainText -Force
$credService = New-Object System.Management.Automation.PSCredential ($serviceUser,
$secServicePassword)

.\install.ps1 -URL https://keyfactor.keyexample.com/KeyfactorAgents -ClientCer-
tificateThumbprint 29b21df7403b4afe6daf44762e5c47fb73c07ce7 -ServiceCredential
$credService -OrchestratorName websrvr42-IIS.keyexample.com -Capabilities all

Copying files
Setting configuration data
Installing Windows Service
Granting necessary file permissions to KEYEXAMPLE\svc_kyforch for configuration file
Granting Log on as a Service permission to KEYEXAMPLE\svc_kyforch
Starting service KeyfactorOrchestrator-Default

11.4 Keyfactor Orchestrators Installation and Configuration Guide 38

Tip: The client certificate authentication example shown here references a certificate
stored in the local machine store. Because of this, the service account that will run the
Universal Orchestrator service needs to be granted permissions to read the private key
of the certificate before the installation is run. If the certificate had been acquired into
the Universal Orchestrator service account user's personal store rather than the local
machine store, the step of granting private key read permissions would not have been
necessary.

Installation example with expected output using client certificate authentication with the certi-
ficate stored as a file:

.\install.ps1 -URL https://keyfactor.keyexample.com/KeyfactorAgents -ClientCertificate
C:\Certs\kyforch.pfx -ClientCertificatePassword MySecurePassword123! -OrchestratorName
websrvr42-IIS.keyexample.com -Capabilities all

Copying files
Setting configuration data
Installing Windows Service
Granting necessary file permissions to KEYEXAMPLE\svc_kyforch for configuration file
Granting Log on as a Service permission to KEYEXAMPLE\svc_kyforch
Starting service KeyfactorOrchestrator-Default

Tip: The client certificate authentication example shown here does not use the -
ServiceCredential parameter. This will cause the Universal Orchestrator service to run
as Network Service. If you prefer to run the service as a domain service account, you will
need to include the -ServiceCredential parameter and specify the PSCredential value for
the service credentials appropriately, as shown in the previous examples.
Network Service will need to be granted read and write permissions on the PFX file
before the script is executed.

 4. Review the output from the installation to confirm that no errors have occurred.

The script creates a directory, C:\Program Files\Keyfactor\Keyfactor Orchestrator by default, and
places the orchestrator files in this directory. Log files are found in C:\Program Files\Key-
factor\Keyfactor Orchestrator\logs by default, though this is configurable (see Configure Logging
for the Universal Orchestrator on page 78).

The orchestrator service, by default given a display name of Keyfactor Orchestrator Service
(Default), should be automatically started at the conclusion of the install and configured to restart on
reboot unless you have selected the NoService parameter.

Tip: Once the installation of the orchestrator is complete, you need to use the Keyfactor
Command Management Portal to approve the orchestrator and configure certificate stores or

11.4 Keyfactor Orchestrators Installation and Configuration Guide 39

SSL jobs as per the Keyfactor Command Reference Guide:

 l Orchestrator Management Operations: Approving or Disapproving Orchestrators
 l Certificate Store Operations
 l SSL Discovery

If you've opted to enable remote CA management for the orchestrator, further configuration
is needed (see Configure the Universal Orchestrator for Remote CA Management on
page 66).

2.2.3 Install the Universal Orchestrator on a Linux Server

To install the Keyfactor Universal Orchestrator on a Linux server, copy the zip file containing install-
ation files to a temporary working directory on the Linux server and unzip it.

To begin the installation:

 1. On the Linux machine on which you wish to install the orchestrator, in a command shell change to
InstallationScripts subdirectory under the temporary directory where you placed the installation
files.

 2. Use the chmod command to make the install.sh script file executable. The file ships in a non-
executable state to avoid accidental execution. For example:

sudo chmod +x install.sh

 3. In the command shell, run the install.sh script as root using the following parameters to begin the
installation:

--url (Required)

This is the URL to the Agent Services endpoint on the Keyfactor Command server running the
Keyfactor Command Agent Services role, which is installed as part of the Keyfactor Command
Services role. If you installed all the Keyfactor Command server roles together, this is the URL
for your Keyfactor Command server with /KeyfactorAgents after the server's IP or FQDN (e.g.
https://keyfactor.keyexample.com/KeyfactorAgents). If you choose to use SSL to connect to
the Keyfactor Command server, you’ll need to enter a URL that contains a hostname that is
found in the SSL certificate.

This parameter sets the local orchestrator application setting AgentsServerUri to the specified
value.

This parameter is required.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 40

Tip: If your Keyfactor Command server was configured with an alternate virtual directory
for the Keyfactor Command Agents Services endpoint, you will need to enter that in the
URL rather than /KeyfactorAgents.

Client Authentication Parameters (Required)

The Keyfactor Universal Orchestrator supports authenticating to the Keyfactor Command
server using Basic authentication, token authentication, or client certificate authentication. The
method you choose depends in part on the identity provider in use for the Keyfactor Command
the orchestrator will be communicating with. If you’re using Active Directory as an identity
provider, you may choose Basic authentication or client certificate authentication. If you’re
using an identity provider other than Active Directory, you may choose token authentication or
client certificate authentication.

When you configure the orchestrator with Basic authentication (username and password), you
provide a username and password. With token authentication (bearer-token-url, client_id, and
client_secret), you provide a client ID and secret that allows the orchestrator to acquire a
bearer token. With client certificate authentication (client-auth-certificate and client-auth-certi-
ficate-password), the orchestrator uses a client certificate to authenticate to either a proxy or
IIS on the Keyfactor Command server. You cannot configure multiple types of authentication
together.

One of the following authentication methods is required:

 l Basic Authentication: username and password
 l Token Authentication: bearer-token-url, client_id, client_secret, and token_lifetime
 l Client Certificate Authentication: client-auth-certificate and client-auth-certificate-pass-

word

Important: Choosing to use client certificate authentication for the orchestrator may
require additional configuration on your Keyfactor Command server. For more inform-
ation, see Install the Main Keyfactor Command Components on the Keyfactor Command
Server(s) in the Keyfactor Command Server Installation Guide and Appendix - Set up the
Universal Orchestrator to Use Client Certificate Authentication with Certificates Stored
in Active Directory on page 164, Appendix - Set up the Universal Orchestrator to Use
Client Certificate Authentication via a Reverse Proxy: Citrix ADC on page 151.

Tip: For information about rotating passwords and client authentication certificates, see
Change Service Account Passwords on page 82.

--username (Basic Authentication)

This is the Keyfactor Command connect service account that the orchestrator uses to commu-
nicate with Keyfactor Command that you created as per Create Service Accounts for the

11.4 Keyfactor Orchestrators Installation and Configuration Guide 41

Universal Orchestrator on page 11. It may be entered either as username@domain (e.g. svc_
kyforch@keyexample.com) or DOMAIN\\username (e.g. KEYEXAMPLE\\svc_kyforch).

This parameter is required if Basic authentication will be used.

This parameter cannot be used in conjunction with the bearer-token-url or client-auth-certi-
ficate and client-auth-certificate-password parameters.

--password (Basic Authentication)

This is the password for the Keyfactor Command connect service account that the orches-
trator uses to communicate with Keyfactor Command specified with the username parameter.

Important: The password for the Keyfactor Command connect service account is
stored in clear text in the orchestratorsecrets.json file in the configuration directory
under the installation directory for the orchestrator. By default, this file is granted
read/write permissions for the Universal Orchestrator service account running the
service on the Linux machine (keyfactor-orchestrator by default) and no permissions for
any other users. Access to this file should be strictly controlled.
If you prefer to avoid the use of a password in a file, consider using client certificate
authentication.

This parameter is required if the username parameter is specified.

This parameter cannot be used in conjunction with the bearer-token-url or client-auth-certi-
ficate and client-auth-certificate-password parameters.

Important: Your password may be preserved in command history and may be visible on
the process listing when providing a password using this parameter. See the --secret-
file-path and --secret-std-in parameters for alternatives.

--bearer-token-url (Token Authentication)

Specifying this parameter causes the installation to be done using token authentication for the
connection to Keyfactor Command. Set this to the URL of the token endpoint for your identity
provider. For example:

https://my-keyidp-server.keyexample.com/realms/Keyfactor/protocol/openid-
connect/token

For Keyfactor Identity Provider, this is included among the information that can be found on
the OpenID Endpoint Configuration page, a link to which can be found on the Realm Settings
page (see Gathering Keyfactor Identity Provider Data for the Keyfactor Command Installation
in the Keyfactor Command Server Installation Guide).

11.4 Keyfactor Orchestrators Installation and Configuration Guide 42

This parameter requires that client-id and client-secret also be specified.

This parameter is required if token authentication will be used.

This parameter cannot be used in conjunction with the username and password or client-auth-
certificate and client-auth-certificate-password parameters.

--client-id (Token Authentication)

This parameter is used to specify the ID of the identity provider client that should be used to
authenticate the session when bearer-token-url authentication is used (see Create Service
Accounts for the Universal Orchestrator on page 11).

This parameter requires that client-secret also be specified.

This parameter is only supported if the bearer-token-url parameter is specified.

--client-secret (Token Authentication)

This parameter is used to specify the secret of the Keyfactor Identity Provider client that
should be used to authenticate the session when bearer-token-url authentication is used.

Important: The client secret for the Keyfactor Command connect service account is
stored in clear text in the orchestratorsecrets.json file in the configuration directory
under the installation directory for the orchestrator. By default, this file is granted
read/write permissions for the Universal Orchestrator service account running the
service on the Linux machine (keyfactor-orchestrator by default) and no permissions for
any other users. Access to this file should be strictly controlled.
If you prefer to avoid the use of a password in a file, consider using client certificate
authentication.

This parameter requires that client-id also be specified.

This parameter is only supported if the bearer-token-url parameter is specified.

Important: Your secret may be preserved in command history and may be visible on the
process listing when providing a secret using this parameter. See the --secret-file-path
and --secret-std-in parameters for alternatives.

--token-lifetime (Token Authentication)

The number of seconds for which the bearer token is valid. If not specified, the orchestrator
uses the default value set by the Keyfactor Command server of 300 seconds (5 minutes).

This parameter requires that client-id and client-secret also be specified.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 43

This parameter is only supported if the bearer-token-url parameter is specified.

The token-lifetime is optional.

--client-auth-certificate (Client Certificate Authentication)

The path and file name on the orchestrator of a PKCS12 file containing the client authen-
tication certificate used to authenticate to Keyfactor Command created as per Acquire a Certi-
ficate for Client Certificate Authentication (Optional) on page 18. The certificate must have a
Client Authentication EKU.

The account under which the Universal Orchestrator service will run (see --service-user on
page 47) needs read and write permissions on the PKCS12 file you specify with this para-
meter.

This parameter requires that client-auth-certificate-password also be specified.

Specifying this parameter sets the local orchestrator application setting CertPath to the
specified value.

This parameter cannot be used in conjunction with the bearer-token-url or username and pass-
word parameters.

--client-auth-certificate-password (Client Certificate Authentication)

The password for the PKCS12 file specified with the client-auth-certificate parameter.

Specifying this parameter requires that client-auth-certificate also be specified.

This parameter cannot be used in conjunction with the bearer-token-url or username para-
meters.

Important: Your password may be preserved in command history and may be visible on
the process listing when providing a password using this parameter. See the --secret-
file-path and --secret-std-in parameters for alternatives.

--secret-file-path (All Authentication Types)

This parameter specifies a path and filename to provide a plain text secret for the Keyfactor
Command connect service account that the orchestrator uses to communicate with Keyfactor
Command. For example:

sudo ./install.sh --secret-file-path /opt/apps/my_secret_file [other parameters
here]

11.4 Keyfactor Orchestrators Installation and Configuration Guide 44

This parameter can be used with the username, client-auth-certificate, or client-id parameter
to provide the authentication secret from a file rather than the command line to avoid storing it
in command history.

This parameter cannot be used in conjunction with the password, client_secret, or client-auth-
certificate-password parameter.

Tip: Be sure to delete your secret file at the conclusion of the installation.

--secret-std-in (All Authentication Types)

This parameter allows you to provide a plain text secret via standard in for the Keyfactor
Command connect service account that the orchestrator uses to communicate with Keyfactor
Command. For example:

echo "MySuperSecretPassword" | sudo ./install.sh --secret-std-in [other parameters
here]

This parameter can be used with the username, client-auth-certificate, or client-id parameter
to provide the authentication secret from a file rather than the command line to avoid storing it
in command history.

This parameter cannot be used in conjunction with the password, client_secret, or client-auth-
certificate-password parameter.

--audience

This parameter is used to specify an audience value to be included in token requests delivered
to the identity provider when using an identity provider other than Active Directory.

--capabilities

This parameter is used to specify the capabilities the orchestrator will support if a capability set
other than the default set is desired. Supported options are:

 l all

All the capabilities supported by the orchestrator will be enabled and reported to
Keyfactor Command.

 l none

The orchestrator will be installed with no capabilities and will not be registered with
Keyfactor Command. This is primarily used for implementations that will support only
custom capabilities (see Installing Custom-Built Extensions on page 68 and Configuring
Script-Based Certificate Store Jobs on page 74).

 l ssl

11.4 Keyfactor Orchestrators Installation and Configuration Guide 45

Only the SSL discovery and monitoring capability will be enabled and reported to
Keyfactor Command.

If the in-place parameter is specified, this parameter must be set to all.

If this parameter is not specified, the default set of capabilities for the orchestrator will be used.
For the Linux orchestrator, the default capability set is LOG (log fetching).

Important: The Linux orchestrator does not support the CA (remote CA management) or
IIS (Windows server certificate store) capabilities due to the Windows-specific nature of
the authentication requirements for these methods.

--destination

This parameter specifies a location in which to install the orchestrator that is other than the
default. The default installation location is:

/opt/keyfactor/orchestrator

This parameter cannot be used in conjunction with the in-place parameter.

--force, -f

Specifying this parameter causes the installation to warn and continue on certain potential prob-
lems, including:

 l The local Universal Orchestrator service account does not exist. The default user will be
created if force is specified.

 l The local application settings (appsettings.json) file does not exist. A new one will be
created if force is specified.

 l A service with either the default service name or the service name specified with the
service-suffix parameter already exists. The service will be overwritten if force is
specified.

 l Either the default installation location or the location specified with the location para-
meter is not empty. The install will occur to the specified or default location anyway and
files may be overwritten if force is specified.

If this parameter is not specified and any of these problems are encountered, the installation will
terminate prematurely. See also the what-if parameter.

--in-place

This parameter is used to indicate that the installation should occur in the current directory
where the install files are located and no files should be copied to another location on the
machine.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 46

This parameter cannot be used in conjunction with the destination parameter. This parameter is
only supported if the capabilities parameter is set to all.

--no-revocation-check

This parameter is used to indicate that the revocation status (CRL) of the SSL certificate on the
Keyfactor Command server should not be checked when connecting to Keyfactor Command.

Specifying this parameter sets the local orchestrator application setting Check-
ServerCertificateRevocation to false. The default for this parameter is true (CRL checking will
be done).

--no-service

This parameter is used to indicate that no service should be created and added to the server's
service control manager. The orchestrator will be installed but will need to be started manually
or added to the server's service control manager manually.

This parameter cannot be used in conjunction with the service-suffix or service-user parameter.

--orchestrator-name

Specifying this parameter allows you to override the name the orchestrator would by default use
to register itself in Keyfactor Command.

Specifying this parameter sets the local orchestrator application setting OrchestratorName to
the specified value.

By default, the orchestrator uses the results from a hostname lookup for the orchestrator's
name.

--service-suffix

This parameter is used to add a suffix to the root service name of keyfactor-orchestrator (e.g.
instance1 for a resulting service name of keyfactor-orchestrator-instance1). This is used
primarily for implementations where the orchestrator will be installed multiple times on the same
server.

This parameter cannot be used in conjunction with the no-service parameter.

If this parameter is not specified, the default service name of keyfactor-orchestrator-default will
be used.

--service-user

This is the local Linux Universal Orchestrator service account that the service will run as (see
Create Service Accounts for the Universal Orchestrator on page 11. It should be entered as just
the user name. Entry of a password for this service account is not required. You may either

11.4 Keyfactor Orchestrators Installation and Configuration Guide 47

create this account prior to running the installation script (or use an existing account) or use the
force parameter to generate the account automatically during the installation process.

This parameter cannot be used in conjunction with the no-service parameter.

If this parameter is not specified, the default service account name of keyfactor-orchestrator
will be used.

--scope

This parameter is used to specify one or more scopes that should be included in token requests
delivered to the identity provider when using an identity provider other than Active Directory.
Multiple scopes should be separated by spaces.

--source

Specify this parameter to point to a directory containing the installation files other than the
directory in which the install.sh file is found. This parameter is used primarily if a copy of the
install.sh file is made in an alternate directory, updated with some customizations, and then used
for installation without being copied back to the directory where the remaining installation files
are located.

--verbose, -v

Specify this parameter to output verbose installation messages.

--what-if

This parameter is used to test the installation command without actually installing in order to see
any errors that might arise and correct them before installing.

Installation example with expected output using Basic authentication (the password for the svc_
kyforch service account is saved in my_password_file):

vi my_password_file

sudo ./install.sh --url https://keyfactor.keyexample.com/KeyfactorAgents --username svc_
kyforch@keyexample.com --secret-file-path my_password_file --orchestrator-name appsrvr16-
ssl.keyexample.com --capabilities all --force

Creating user keyfactor-orchestrator
 Copying files from /tmp/KeyfactorOrchestrator to /opt/keyfactor/orchestrator
 Saving app settings
 Setting file permissions
 Installing systemd service keyfactor-orchestrator-default
 Created symlink /etc/systemd/system/multi-user.target.wants/keyfactor-orchestrator-

11.4 Keyfactor Orchestrators Installation and Configuration Guide 48

default.service → /etc/systemd/system/keyfactor-orchestrator-default.service.
 Starting systemd service keyfactor-orchestrator-default

Installation example with expected output using token authentication (the secret for the client is
provided at standard in):

echo "WcHlahyku6wmD0a6rjOXClrkz0Jw9sGh" | sudo ./install.sh --url https://key-
factor.keyexample.com/KeyfactorAgents --bearer-token-url https://appsr-
vr18.keyexample.com:1443/realms/Keyfactor/protocol/openid-connect/token --client-id Universal-
Orchestrator --secret-std-in --orchestrator-name appsrvr16-ssl.keyexample.com --capabilities all
--force

Creating user keyfactor-orchestrator
 Copying files from /tmp/KeyfactorOrchestrator to /opt/keyfactor/orchestrator
 Setting file permissions and saving app settings
 Installing systemd service keyfactor-orchestrator-default
 Created symlink /etc/systemd/system/multi-user.target.wants/keyfactor-orchestrator-default.ser-
vice → /etc/systemd/system/keyfactor-orchestrator-default.service.
 Starting systemd service keyfactor-orchestrator-default

Installation example with expected output using client certificate authentication (the password
for the client certificate is saved in cert_password_file):

vi cert_password_file

sudo ./install.sh --url https://keyfactor.keyexample.com/KeyfactorAgents --client-auth-certi-
ficate /opt/certs/kyforch.p12 --secret-file-path cert_password_file --orchestrator-name
appsrvr16-ssl.keyexample.com --capabilities all --force

Creating user keyfactor-orchestrator
 Copying files from /tmp/KeyfactorOrchestrator to /opt/keyfactor/orchestrator
 Saving app settings
 Setting file permissions
 Installing systemd service keyfactor-orchestrator-default
 Created symlink /etc/systemd/system/multi-user.target.wants/keyfactor-orchestrator-default.ser-
vice → /etc/systemd/system/keyfactor-orchestrator-default.service.
 Starting systemd service keyfactor-orchestrator-default

 4. Review the output from the installation to confirm that no errors have occurred.

The script creates a directory, /opt/keyfactor/orchestrator by default, and places the orchestrator
files in this directory. Log files are found in /opt/keyfactor/orchestrator/logs by default, though this
is configurable (see Configure Logging for the Universal Orchestrator on page 78).

11.4 Keyfactor Orchestrators Installation and Configuration Guide 49

The orchestrator service, by default named keyfactor-orchestrator-default.service, should be auto-
matically started at the conclusion of the install and configured to restart on reboot unless you have
selected the no-service parameter.

Tip: Once the installation of the orchestrator is complete, you need to use the Keyfactor
CommandManagement Portal to approve the orchestrator and configure certificate stores or
SSL jobs as per the Keyfactor Command Reference Guide:

 l Orchestrator Management Operations: Approving or Disapproving Orchestrators
 l Certificate Store Operations
 l SSL Discovery

2.2.4 Install the Universal Orchestrator in a Linux Container

When the Keyfactor Universal Orchestrator runs in a Linux container, it is typically installed in a
containerization solution that sits on top of a Linux server or set of servers. There are a wide variety
of containerization solutions for multiple operating systems. This document covers deploying the
container to either Docker or Kubernetes on Linux.

Two different images are available, depending on the functionality you are looking for:

 l universal-orchestrator:[version]

This image has no built-in functionality and is designed to be used with custom extensions.
 l universal-orchestrator-ssl:[version]

This image provides the SSL capability to provide support for SSL discovery and monitoring.

Note: The image artifactory will be available soon. For more information, check with your
Keyfactor Client Success Manager or contact support@keyfactor.com.

Docker

If you plan to use Docker, you may find it helpful to first run the Universal Orchestrator in the fore-
ground so that it will output log messages to assist in troubleshooting.

Tip: If your Docker implementation hasn’t been configured to inject your DNS server(s) into
running containers, you may wish to do this so that the Universal Orchestrator will be able to
do name resolution. To do this, on the Linux server(s) where you are running Docker, create
or update the /etc/docker/daemon.json file, and add an entry similar to the following:

{"dns": ["DNS_IP_Address_1", "DNS_IP_Address_2"] }

To install the Universal Orchestrator in a Linux container and start the container using compose:

11.4 Keyfactor Orchestrators Installation and Configuration Guide 50

mailto:support@keyfactor.com

 1. Create a directory from which you will run the Docker container (e.g. /opt/kyf_uo).

 2. Select a Universal Orchestrator image, and from your Docker host, retrieve the Universal
Orchestrator image from the artifactory with commands similar to the following (placing the
token or API key provided to you by Keyfactor in the my_password file):

sudo nano my_password.txt

cat my_password.txt | docker login keyexample.jfrog.io --username username --
password-stdin

docker pull keyexample.jfrog.io/keyexample/command/universal-orchestrator-ssl:11.2

Note: The image artifactory will be available soon. For more information, check with your
Keyfactor Client Success Manager or contact support@keyfactor.com.

Important: Remove the my_password.txt file when complete. For example:
sudo rm my_password.txt

 3. Create a Docker compose file (compose.yaml) in the directory for your Docker container similar
to the following, using the inputs as per Table 1: Linux Container Parameters, referencing the
artifictory you pulled, selecting the appropriate authentication mechanism for your environment,
and any additional volume mounts (see Custom Extensions on page 54). The fields highlighted in
red below indicate fields that need to be edited or that you may wish to edit

Important: When editing the file, be sure to preserve the indenting exactly as found.
YAML requires a very specific file layout to function. If the indenting (multiples of two
spaces) or layout is incorrect, you will receive an error when trying to install.

services:
 universal-orchestrator:
 image: keyexample.jfrog.io/keyexample/command/universal-orchestrator-ssl:11.2
 container_name: universal_orchestrator_1
 environment:
 COMMAND_AGENTS_URL: https://keyfactor.keyexample.com/KeyfactorAgents
 ORCHESTRATOR_NAME: appsrvr19-UO-1 # The name the orchestrator uses to register in Keyfactor
Command

 # Uncomment the next two lines to use Active Directory

11.4 Keyfactor Orchestrators Installation and Configuration Guide 51

mailto:support@keyfactor.com

 #USERNAME: KEYEXAMPLE\svc_kyforch
 #PASSWORD: 'MySuperSecretPassword' # The service account password needs quotes under some
circumstances if it contains special characters
 # Uncomment the next four lines to use OAuth (TOKEN_LIFETIME is optional)
 #BEARER_TOKEN_URL: https://appsrvr18.keyexample.com:1443/realms/Keyfactor/protocol/openid-
connect/token
 #TOKEN_LIFETIME: 150
 #CLIENTID: Universal-Orchestrator
 #CLIENT_SECRET: 'Client-Secret-from-Keyfactor-IdP' # The client secret needs quotes under
some circumstances if it contains special characters
 volumes:
 - /etc/ssl/certs:/etc/ssl/certs:ro

Important: The password or secret for the Keyfactor Command connect service account
is stored in clear text in this compose file. Access to this file should be strictly controlled.

 4. Set the permissions on the compose.yaml file such that the file is owned by root and readable
only by root (this assumes your Docker daemon is running as root, which is typical). For example:

sudo chown root:root compose.yaml

sudo chmod 400 compose.yaml

Tip: If you need to make edits to the compose file, you will need to make the file writable
again. For example:

sudo chmod 600 compose.yaml

 5. Execute the following command to install and run the container in the foreground:

sudo docker compose up

Press CTRL-C to stop it if it’s running in the foreground. You can instead run it in the back-
ground by adding the -d flag like so, but it can sometimes be helpful to run it in the foreground
initially so that you can easily review the log output live:

sudo docker compose up -d

Tip: To stop and start the container again after installation is complete, use the following
commands:

11.4 Keyfactor Orchestrators Installation and Configuration Guide 52

sudo docker compose stop

sudo docker compose start

Or:

sudo docker compose restart

If you need to delete the container and try the install again, use this command:

sudo docker compose down

To review logs generated from the container, identify the container ID or name with this
command:

sudo docker container ls

For example, in the following output you could select either the container ID
0cf41b4c1ca4 or the name kyfidp:

CONTAINER ID IMAGE COMMAND
 CREATED STATUS PORTS
 NAMES
 b2abfe2b2b92 art.example1.com/condev-con/ejbca/ejbca-proxy:8.2.0 "/opt/key-
factor/bin/…" 2 months ago Up 2 months 8009/tcp, 8081-8082/tcp, :::80->8080/tcp,
:::443->8443/tcp ejbca82
 ee461eb238ba mariadb:latest "docker-entry-
point.s…" 2 months ago Up 2 months 0.0.0.0:3306->3306/tcp, :::3306->3306/tcp
 ejbca81-database
0cf41b4c1ca4 art.example2.com/condev-exam/command/auth-server:latest "/opt/ky-
fidp/bin/k…" 3 months ago Up 3 months 8080/tcp, 0.0.0.0:5443->8443/tcp, :::5443-
>8443/tcp kyfidp

Then use the following command to output the current log (with the optional --follow to
make output continuous):

sudo docker container logs [--follow] [container ID or name]

11.4 Keyfactor Orchestrators Installation and Configuration Guide 53

Custom Extensions

To use custom extensions with the orchestrators (see Installing Custom-Built Extensions on
page 68), you can either build them into a custom-built orchestrator image or reference them as
external volume mounts. The latter works well for quick testing in a development environment, but
you’ll probably want to use a custom-built orchestrator image for a production deployment.

To run the orchestrator referencing an extension as an external volume mount:

 1. Create a directory on your Linux server to host the extension(s) you wish to use and copy each
extension you wish to use into this directory. For example:

/opt/kyf_uo/exts/f5-ext

/opt/kyf_uo/exts/citrix-ext

Make note of whether the extension documentation indicates whether the files in the extension
need to exist within a subdirectory or whether they should be placed in the root of the directory
you’re creating (e.g. f5-ext).

 2. Follow the instructions above, but modify the volumes section of your docker compose file to
include the extension(s). For example (where /app/extensions is the path within the image where
the extensions will live):

#[See beginning above]
 volumes:
 - /etc/ssl/certs:/etc/ssl/certs:ro
 - /opt/kyf_uo/exts/f5-ext:/app/extensions/f5-ext
 - /opt/kyf_uo/exts/citrix-ext:/app/extensions/citrix-ext

To create a custom build of the orchestrator referencing extensions:

 1. Create a directory on your Linux server to host the extension(s) you wish to use and copy each
extension you wish to use into this directory. This should be a subdirectory of the directory in
which you will build your custom orchestrator image. For example:

/opt/kyf_uo/exts/f5-ext

/opt/kyf_uo/exts/citrix-ext

Make note of whether the extension documentation indicates whether the files in the extension
need to exist within a subdirectory or whether they should be placed in the root of the directory
you’re creating (e.g. f5-ext).

11.4 Keyfactor Orchestrators Installation and Configuration Guide 54

 2. In the directory above the extension directory (e.g. /opt/kyf_uo), create a file called Dockerfile
and open it for editing. The entries in this file will vary depending on the extension(s) you wish to
include in your build. Check the documentation for the specific extension for more information.
The following example includes two extensions:

FROM keyfactor.jfrog.io/kyfuseng-release/command/universal-orchestrator:11.2
 WORKDIR "/app/extensions/f5-ext"
 COPY ./ext/f5-ext/ ./
 WORKDIR "/app/extensions/citrix-ext"
 COPY ./ext/citrix-ext/ ./
 WORKDIR "/app"

This build script sets the source for the artifactory and then changes directories within the
image to the f5-ext directory. It copies the contents of the ext/f5-ext subdirectory under the
current working directory on the host to the current directory in the image. It then repeats this
change directory and copy for the Citrix Netscaler extension. Finally, it changes directory back
to the /app directory within the image before leaving the build. This last step is important to be
sure the image will later function as expected.

 3. Build your custom image by executing the following command from the directory in which your
Dockerfile is located (where custom-uo-image is the name you give to your image):

docker build -t custom-uo-image .

 4. Create your compose file as above, but referencing your custom image like so:

 services:
 universal-orchestrator:
 image: custom-uo-image
 container_name: universal_orchestrator_f5_ns
 #[see remainder above]

 5. Complete the install as above.

Kubernetes

To install the Universal Orchestrator in a Linux container and start the container using Kubernetes:

 1. Create a directory from which you will run the container (e.g. /opt/kyf_uo).

 2. Create a secret in Kubernetes for the credentials that the orchestrator(s) will use to authen-
ticate to Keyfactor Command (see Create Service Accounts for the Universal Orchestrator on
page 11). For example, for Active Directory authentication:

echo -n 'keyexample\svc_kyforch' > ./username

11.4 Keyfactor Orchestrators Installation and Configuration Guide 55

echo -n 'MySuperSecretPassword' > ./password

kubectl create secret generic uo-credentials --from-file=./username --from-
file=./password

For authentication with an identity provider other than Active Directory:

echo -n 'Universal-Orchestrator' > ./clientid

echo -n 'Client-Secret-from-Keyfactor-IdP' > ./clientsecret

kubectl create secret generic uo-credentials --from-file=./clientid --from-
file=./clientsecret

Important: The password or secret for the Keyfactor Command connect service account
is stored in clear text in the “password” or “clientsecret” file. Be sure to delete it after
the Kubernetes secret has been created.

 3. Create a secret in Kubernetes for the credentials you will use to authenticate to the Keyfactor
artifactory. For example:

kubectl create secret docker-registry keyregcred --docker-server=keyexample.jfrog.io
--docker-username=MyUsername --docker-password=MySuperSecretAPIKeyorToken --docker-
email=my.email@my-domain.com

Note: The image artifactory will be available soon. For more information, check with your
Keyfactor Client Success Manager or contact support@keyfactor.com.

 4. On your Kubernetes server, create a configmap containing CA root certificates, including the
chain certificates for the SSL certificate on the Keyfactor Command server (see Configure
Certificate Root Trust for the Universal Orchestrator on page 15). For example:

kubectl create configmap ca-roots --from-file=/etc/ssl/certs/ca-certificates.crt

Note: The standard path to the trusted root store will vary depending on your Linux imple-
mentation.

 5. Create a Kubernetes deployment file (e.g. uo_ssl.yaml) in the directory for your Kubernetes
container similar to the following, using the inputs as per Table 1: Linux Container Parameters,
referencing the artifictory for the image you wish to install, selecting the appropriate

11.4 Keyfactor Orchestrators Installation and Configuration Guide 56

mailto:support@keyfactor.com

authentication mechanism for your environment, and any additional volume mounts. The fields
highlighted in red below indicate fields that need to be edited or that you may wish to edit.

Important: When editing the file, be sure to preserve the indenting exactly as found.
YAML requires a very specific file layout to function. If the indenting (multiples of two
spaces) or layout is incorrect, you will receive an error when trying to install.

 apiVersion: apps/v1
 kind: StatefulSet
 metadata:
 # Give the pod a unique name if you plan to deploy more than one orchestrator to the same Kuber-
netes server or cluster
 name: keyfactor-uo-1
 labels:
 app.kubernetes.io/name: keyfactor-universal-orchestrator
 app.kubernetes.io/instance: ssl-1
 app.kubernetes.io/version: "11.2"
 spec:
 # The universal orchestrator should not have replicas; instead use many different deployments
with different names if horizontal scaling is needed
 replicas: 1
 selector:
 matchLabels:
 app.kubernetes.io/name: keyfactor-universal-orchestrator
 app.kubernetes.io/instance: ssl-1
 template:
 metadata:
 labels:
 app.kubernetes.io/name: keyfactor-universal-orchestrator
 app.kubernetes.io/instance: ssl-1
 spec:
 initContainers:
 # The below two commented out blocks provide examples of adding custom extensions
 #- env:
 # - name: EXTENSION_NAME
 # value: citrix-adc-orchestrator
 # - name: EXTENSION_VERSION
 # value: 2.0.0
 # - name: INSTALL_PATH
 # value: /app/extensions/citrix-adc-orchestrator
 # image: example/uo_extension_installer:1.0.5
 # imagePullPolicy: IfNotPresent
 # name: citrix-adc-orchestrator-installer

11.4 Keyfactor Orchestrators Installation and Configuration Guide 57

 # volumeMounts:
 # - mountPath: /app/extensions
 # name: command-pv-claim
 # readOnly: false
 # subPath: ""
 #- env:
 # - name: EXTENSION_NAME
 # value: f5-rest-orchestrator
 # - name: EXTENSION_VERSION
 # value: 1.4.4
 # - name: INSTALL_PATH
 # value: /app/extensions/f5-rest-orchestrator
 # image: example/uo_extension_installer:1.0.5
 # imagePullPolicy: IfNotPresent
 # name: f5-rest-orchestrator-installer
 # volumeMounts:
 # - mountPath: /app/extensions
 # name: command-pv-claim
 # readOnly: false
 # subPath: ""
 containers:
 - name: keyfactor-universal-orchestrator-ssl-1
 # Uncomment the desired image and add correct artifactory
 image: "keyexample.jfrog.io/keyexample/command/universal-orchestrator-ssl:11.2"
 #image: "keyexample.jfrog.io/keyexample/command/universal-orchestrator:11.2"
 imagePullPolicy: IfNotPresent
 # Universal orchestrator environment
 env:
 # The below block is the URL of the orchestrator API on the Keyfactor Command server
 - name: COMMAND_AGENTS_URL
 value: https://keyfactor.keyexample.com/KeyfactorAgents
 # The below block is the name the orchestrator will use when registering with Keyfactor
Command
 - name: ORCHESTRATOR_NAME
 value: k8s-universal-orchestrator-ssl-1
 - name: LOG_LEVEL
 value: Info
 # Uncomment the next two blocks to use Active Directory authentication
 #- name: USERNAME
 # valueFrom:
 # secretKeyRef:
 # name: uo-credentials
 # key: username

11.4 Keyfactor Orchestrators Installation and Configuration Guide 58

 #- name: PASSWORD
 # valueFrom:
 # secretKeyRef:
 # name: uo-credentials
 # key: password
 # Uncomment the next four blocks to use OAuth authentication (TOKEN_LIFETIME is
optional)
 #- name: BEARER_TOKEN_URL
 # value: https://appsrvr18.keyexample.com:1443/realms/Keyfactor/protocol/openid-
connect/token
 #- name: TOKEN_LIFETIME
 # value: "150"
 #- name: CLIENTID
 # valueFrom:
 # secretKeyRef:
 # name: uo-credentials
 # key: clientid
 #- name: CLIENT_SECRET
 # valueFrom:
 # secretKeyRef:
 # name: uo-credentials
 # key: clientsecret
 volumeMounts:
 # Uncomment the next block if adding extensions
 #- mountPath: /app/extensions
 # name: command-pv-claim
 # readOnly: false
 # subPath: ""
 - mountPath: /etc/ssl/certs/ca-certificates.crt
 name: root-ca
 readOnly: false
 subPath: ca-certificates.crt
 volumes:
 - configMap:
 items:
 - key: ca-certificates.crt
 path: ca-certificates.crt
 name: ca-roots
 name: root-ca
 # Uncomment the next block if adding extensions
 #- name: command-pv-claim
 # emptyDir: {}
 imagePullSecrets:

11.4 Keyfactor Orchestrators Installation and Configuration Guide 59

 - name: keyregcred

 6. Set the permissions on the deployment file such that the file is owned by root and readable only
by root (this assumes your Kubernetes implementation is running as root, which is typical). For
example:

sudo chown root:root uo_ssl.yaml

sudo chmod 400 uo_ssl.yaml

Tip: If you need to make edits to the compose file, you will need to make the file writable
again. For example:

sudo chmod 600 uo_ssl.yaml

 7. Execute the following command to install and run the container:

kubectl apply -f uo_ssl.yaml

Tip: To review logs generated from the container, identify the pod name with this
command:

kubectl get pods

Then use the following command to output the current log:

kubectl logs [pod name] --follow

The optional follow parameter will continuously output the logs as they are generated
until interrupted.

If you need to delete the container and try the install again, use this command:

kubectl delete -f uo_ssl.yaml

Table 1: Linux Container Parameters

Parameter Description

App Settings__
Check Server
Certificate
Revocation

A Boolean that indicates whether the revocation status (CRL) of the SSL certificate
on the Keyfactor Command server should be checked when connecting to Keyfactor
Command (true) or not (false). The default is true (CRL checking will be done).

11.4 Keyfactor Orchestrators Installation and Configuration Guide 60

Parameter Description

AUDIENCE This parameter is used to specify an audience value to be included in token requests
delivered to the identity provider when using an identity provider other than Active
Directory.

BEARER_
TOKEN_ URL

Required*. The URL of the token endpoint for your identity provider. For example:

https://my-keyidp-serv-
er.keyexample.com/realms/Keyfactor/protocol/openid-connect/token

For Keyfactor Identity Provider, this is included among the information that can be
found on the OpenID Endpoint Configuration page, a link to which can be found on the
Realm Settings page (see Gathering Keyfactor Identity Provider Data for the
Keyfactor Command Installation in the Keyfactor Command Server Installation Guide).
This parameter is required if you’re using an identity provider other than Active
Directory.

CLIENT ID Required*. For implementations using an identity provider other than Active Directory,
the ID of the identity provider client that should be used to authenticate the session
(see Create Service Accounts for the Universal Orchestrator on page 11).
This parameter is required if you’re using an identity provider other than Active
Directory.

CLIENT_
SECRET

Required*. For implementations using an identity provider other than Active Directory,
the secret of the identity provider client that should be used to authenticate the
session.
This parameter is required if you’re using an identity provider other than Active
Directory.

COMMAND_
AGENTS_ URL

Required. The URL of the Orchestrators API on the Keyfactor Command server. For
example:

https://keyfactor.keyexample.com/KeyfactorAgents

LOG_ LEVEL The logging level for the orchestrator. The default value is Info. Possible values are
the same as those described in Configure Logging for the Universal Orchestrator on
page 78.

ORCHESTRATO-
R_ NAME

The name the orchestrator uses to register itself with Keyfactor Command. By default,
the container hostname is used, which is not ideal as this will create a new orches-
trator entry with every container start. Although this parameter is not strictly
required, Keyfactor strongly recommends using it.
If you choose to uninstall and reinstall the orchestrator (e.g. using compose down), it

11.4 Keyfactor Orchestrators Installation and Configuration Guide 61

Parameter Description

is important to use the same orchestrator name for subsequent implementations so
that Keyfactor Command will recognize the orchestrator when it is started again.

PASSWORD Required*. The password for the Keyfactor Command Connect Service Account if
you’re using Active Directory as an identity provider (see USERNAME).
This parameter is required if you’re using Active Directory as an identity provider.

SCOPE This parameter is used to specify one or more scopes that should be included in token
requests delivered to the identity provider when using an identity provider other than
Active Directory. Multiple scopes should be separated by spaces.

TOKEN_
LIFETIME

For implementations using an identity provider other than Active Directory, the number
of seconds for which the bearer token is valid. If not specified, the orchestrator uses
the default value set by the Keyfactor Command server of 300 seconds (5 minutes).

USERNAME Required*. The username for service account used to connect to the Keyfactor
Command server (see PASSWORD). This is the Keyfactor Command Connect Service
Account described in Create Service Accounts for the Universal Orchestrator on
page 11 if you’re using Active Directory as an identity provider. The orchestrator uses
Basic Authentication to authenticate to Keyfactor Command.
This parameter is required if you’re using Active Directory as an identity provider.

Note: The Keyfactor Universal Orchestrator running in a container does not support client
certificate authentication.

Tip: Once the installation of the orchestrator is complete, you need to use the Keyfactor
CommandManagement Portal to approve the orchestrator and configure certificate stores or
SSL jobs as per the Keyfactor Command Reference Guide:

 l Orchestrator Management Operations: Approving or Disapproving Orchestrators
 l Certificate Store Operations
 l SSL Discovery

2.2.5 Optional Configuration

Once the installation is complete, the Keyfactor Universal Orchestrator should be running and ready
to communicate with the Keyfactor Command server. The initial installation allows the orchestrator
to register itself with Keyfactor Command and run jobs of the capability types configured during
installation (after being approved in the Keyfactor Command Management Portal) unless you
selected the NoService parameter.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 62

This section details some post-install configuration steps that may need to be completed for some
capabilities and some optional settings.

Important: Synchronization for the remote CA functionality of the orchestrator will not begin
until you complete the configuration by making the appropriate configuration changes in the
Keyfactor Command Management Portal. See Orchestrator Management in the Keyfactor
Command Reference Guide for instructions on approving the orchestrator in the Keyfactor
Command Management Portal on the Orchestrators->Management page and Certificate
Authority Operations: Adding or Modifying a CA Record in the Keyfactor Command Reference
Guide for instructions on configuring certificate and template synchronization for remote CAs
on the Locations->Certificate Authorities page.

2.2.5.1 Configure Windows Targets for Remote Management

This step only needs to be completed if you plan to use one of the custom-built extensions for the
Keyfactor Universal Orchestrator to manage certificate stores on Windows machines that relies on
PowerShell remoting and WinRM. Keyfactor offers many custom-built extensions for the Universal
Orchestrator on GitHub:

https://keyfactor.github.io/integrations-catalog/content/orchestrator

Packages that rely on PowerShell remoting and WinRM for store management on Windows include:

 l IIS Certificate Store Manager
 l Remote File Certificate Store Management (Java Keystores, PKCS12 files, PEM files, DER files,

IBM Key Database files)

Permissions

On each target machine where you wish to manage certificate stores with the Universal Orches-
trator, you need to grant the Active Directory or local service account the orchestrator is using to
authenticate to the server sufficient permissions to read the directories where the certificate stores
are located (for the Remote File extension) or local machine certificate store (for the IIS extension)
and, if you plan to deploy certificates to it using Keyfactor Command and bind certificates to IIS,
write to the directories (Remote File) and local machine store (IIS) and appropriate permissions to
bind certificates in IIS. For the Remote File extension, granting read/write permissions on the given
directories may be sufficient. For IIS, the Universal Orchestrator service account needs to be added
to the local administrators group on each target machine.

PowerShell Remoting

The orchestrator uses PowerShell remoting to deliver certificates to targets and bind certificates to
IIS web sites. This includes certificates delivered directly from the PFX enrollment option of the
Keyfactor Command Management Portal or Keyfactor API to targets. If you wish to use any of these
features, you will need to make sure that each target machine on which you want to use one of these
features is running at least PowerShell version 3 and that PowerShell remoting has been enabled.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 63

https://keyfactor.github.io/integrations-catalog/content/orchestrator
https://keyfactor.github.io/integrations-catalog/integrations/iis-orchestrator
https://keyfactor.github.io/integrations-catalog/integrations/remote-file-orchestrator

To check the PowerShell version on a given machine, open a PowerShell window, run the following
command, and check the output CLRVersion:

$PSVersionTable

PowerShell version 3 is available for download from Microsoft.

To enable PowerShell remoting:

 1. On the target machine, open a PowerShell window using the “Run as administrator” option.

 2. On the target machine, run the following command to enable PowerShell remoting:
Enable-PSRemoting

Respond Yes to all the question prompts (or A for all).

 3. On the target machine it may be necessary to run the following command to enable execution of
unsigned local PowerShell scripts for some operating systems (e.g. Windows Server 2008 R2):

Set-ExecutionPolicy RemoteSigned

 4. To test the PowerShell remoting, on the Universal Orchestrator server, open a PowerShell
window and run the following command (where TARGET_MACHINE is the FQDN of the target
machine you wish to manage with the orchestrator):

Enter-PSSession –ComputerName TARGET_MACHINE

Use the actual hostname of the target machine rather than a DNS alias (either A or CNAME
records) when running this test. This is necessary because PowerShell remoting relies on
Kerberos authentication, which requires that the target machine has a service principal name
(SPN) in the HTTP/ format assigned to the target’s machine account. This will be present by
default (as part of the HOST/ format record) as long as the HTTP/ format SPN has not been
manually assigned elsewhere. Using an alias gets into complexities of setting up appropriate
SPNs and assuring that there are not duplicate SPNs in the environment.

You should be connected to the target machine and be able to execute PowerShell commands
on the target machine.

WinRM and Firewall Port Considerations

When you add a certificate store in Keyfactor Command using an extension from Keyfactor‘s GitHub
that relies on WinRM, you are given the option to choose whether to secure the channel to the
target hosting the certificate store with SSL. If you select True, Microsoft Windows Remote Manage-
ment (WinRM) on the target needs to be running on HTTPS and to have been configured with a certi-
ficate for WinRM. If you select False, WinRM on the target needs to be running on HTTP. By default,
WinRM HTTP uses port 5985 and WinRM HTTPS uses port 5986. WinRM HTTPS is not enabled out-
of-the box.

Make sure that any firewalls between the Universal Orchestrator, Keyfactor Command, and the
remote target allow communications over port TCP 5985 or 5986, depending on your SSL selection,

11.4 Keyfactor Orchestrators Installation and Configuration Guide 64

or the alternate port you've configured for WinRM on the target if you're not using the default
WinRM port(s).

You can use the Test-WSMan and Test-netConnection PowerShell cmdlets on the Universal Orches-
trator to validate that communication can occur between the Universal Orchestrator and the remote
target in the manner you are intending to configure it (SSL or not SSL). For example, for SSL using
the default port (where websrvr38.keyexample.com is your remote target):

Test-netConnection -ComputerName "websrvr38.keyexample.com" -port 5986

Output from this command should look something like this if the connection completes successfully:

ComputerName : websrvr38.keyexample.com
 RemoteAddress : 192.168.216.38
 RemotePort : 5986
 InterfaceAlias : Ethernet0
 SourceAddress : 192.168.216.42
 TcpTestSucceeded : True

And:

Test-WSMan -ComputerName websrvr38.keyexample.com -UseSSL

Output from this command should look something like this if the connection completes successfully:

wsmid : http://schemas.dmtf.org/wbem/wsman/identity/1/wsmanidentity.xsd
 ProtocolVersion : http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd
 ProductVendor : Microsoft Corporation
 ProductVersion : OS: 0.0.0 SP: 0.0 Stack: 3.0

On the remote target, you can use the following WinRM command to check the configuration of
WinRM , whether it has been configured to support HTTPS, whether it has a certificate configured
for HTTPS, and the ports in use:

winrm enumerate winrm/config/listener

Output from this command should look something like this if both HTTP and HTTPS are configured for
WinRM (notice the port for HTTPS and the certificate thumbprint indicating a certificate has been
configured for WinRM on HTTPS):

Listener
 Address = *

11.4 Keyfactor Orchestrators Installation and Configuration Guide 65

 Transport = HTTP
 Port = 5985
 Hostname
 Enabled = true
 URLPrefix = wsman
 CertificateThumbprint
 ListeningOn = 192.168.216.42, 127.0.0.1, ::1, fe80::21e1:ab7e:9c35:5550%3

 Listener
 Address = *
 Transport = HTTPS
 Port = 5986
 Hostname = websrvr42.keyexample.com
 Enabled = true
 URLPrefix = wsman
 CertificateThumbprint = 79ee047d673da83cea87ba779761b0ec2b9217f8
 ListeningOn = 192.168.216.42, 127.0.0.1, ::1, fe80::21e1:ab7e:9c35:5550%3

For troubleshooting help, see Remote Management Helpful Tools on page 149. For more information
about configuring WinRM for HTTPS, see:

https://learn.microsoft.com/en-us/troubleshoot/windows-client/system-management-compon-
ents/configure-winrm-for-https

2.2.5.2 Configure the Universal Orchestrator for Remote CA Management

If you've opted to enable the remote CA management functionality for the Keyfactor Universal
Orchestrator, further configuration is needed on the orchestrator to configure the CA(s) that the
orchestrator will manage.

To configure CAs for the orchestrator:

 1. On the orchestrator, open a text editor (e.g. Notepad) using the “Run as administrator” option.

 2. In the text editor, browse to open the extensionoptions.json file for the Universal Orchestrator.
The file is located in the configuration directory within the install directory, which is the following
directory by default:

C:\Program Files\Keyfactor\Keyfactor Orchestrator\configuration

 3. In the extensionoptions.json file, locate the CertificateAuthority section.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 66

https://learn.microsoft.com/en-us/troubleshoot/windows-client/system-management-components/configure-winrm-for-https
https://learn.microsoft.com/en-us/troubleshoot/windows-client/system-management-components/configure-winrm-for-https

Figure 9: CA Configuration Settings

 4. Either set the AdditionalCertificateAuthoritiesAllowed value to true or populate the Certi-
ficateAuthorities section with your CA information (see Table 2: Remote CA Configuration Para-
meters).

 5. Save the file.

 6. Restart the orchestrator service (see Start the Universal Orchestrator Service on page 81).

Table 2: Remote CA Configuration Parameters

Parameter Description

Batch Size An integer that specifies the number of certificate cache records to read from the
Keyfactor Command in each data retrieval batch. The default is 10,000.

Tip: Certificate cache information from Keyfactor Command is retrieved
from and stored on the orchestrator to allow the orchestrator to calculate
which records represent changes and return only those to Keyfactor
Command on requests from Keyfactor Command for CA synchronization.

Cache Hours An integer that specifies the number of hours for which to cache certificate inform-
ation from Keyfactor Command on the orchestrator before clearing it. The default is
3.

Record Count
Limit

An integer that specifies the number of records to read from the CA(s) in each
synchronization batch. The default is 5,000.

MaxErrorCount An integer that specifies the number of times an attempt should be made to read
records from the CA before the synchronization job ends with a failure. The default
is 5.

Additional Certi- A Boolean that sets whether any CAs available to the orchestrator (to which the

11.4 Keyfactor Orchestrators Installation and Configuration Guide 67

Parameter Description

ficate Authorities
Allowed

orchestrator has network access and sufficient permissions) should be considered
as managed (True) or whether only those CAs specifically listed in the Certi-
ficateAuthorities parameter should be considered as managed (False). If you set this
value to True, you do not need to populate the CertificateAuthorities value.

Certificate Author-
ities

An array of the certificate authorities that should be considered managed by the
orchestrator. The certificate authority information includes:

Parameter Description

Forest The name of the Active Directory forest in which the CA
resides.

Hostname The fully qualified domain name of the CA.

Logical Name The logical name of the CA.

2.2.5.3 Installing Custom-Built Extensions

Keyfactor offers many custom-built extensions for the Keyfactor Universal Orchestrator on GitHub:

https://keyfactor.github.io/integrations-catalog/content/orchestrator

Some packages that may be of special interest to long-term users of Keyfactor Command are:

 l AWS Certificate Store Manager
 l Citrix NetScaler Certificate Store Manager
 l F5 Certificate Store Manager
 l IIS Certificate Store Manager
 l Remote File Certificate Store Management (Java Keystores, PKCS12 files, PEM files, DER files,

IBM Key Database files)

Tip: Unlike the Keyfactor Java Agent, which must be installed directly on each machine
holding Java keystores to be managed, the Keyfactor Universal Orchestrator with the Remote
File extension is a centralized orchestrator, which is installed on just a single machine (or
handful of machines) and then reaches out via remote management to each machine holding
Java Keystores to be managed. For Java keystores on Windows servers, it uses PowerShell
remoting and WinRM, typically over HTTPS, for this (see Configure Windows Targets for
Remote Management on page 63). For Java keystores on Linux servers, it uses either SCP or
SFTP (configurable on a per-orchestrator basis and can be configured to try both). Large-
scale deployment of Java keystore management (or any of the other formats supported by
this extension) involves enabling PowerShell remoting and WinRM with HTTPS on Windows

11.4 Keyfactor Orchestrators Installation and Configuration Guide 68

https://keyfactor.github.io/integrations-catalog/content/orchestrator
https://keyfactor.github.io/integrations-catalog/integrations/aws-orchestrator
https://keyfactor.github.io/integrations-catalog/integrations/citrix-adc-orchestrator
https://keyfactor.github.io/integrations-catalog/integrations/f5-rest-orchestrator
https://keyfactor.github.io/integrations-catalog/integrations/iis-orchestrator
https://keyfactor.github.io/integrations-catalog/integrations/remote-file-orchestrator

targets (and a local login user if the servers aren’t domain joined) or enabling SCP or SFTP
and creating a login user for the orchestrator on Linux targets.

Note: For information about installing PAM extensions for the Universal Orchestrator, see
Installing Custom PAM Provider Extensions in the Keyfactor Command Reference Guide.

To find a package on GitHub:

 1. Visit one of the links above to find your desired package, and click either Github Repository or
View source on GitHub to go to the package page on GitHub.

Figure 10: View Packages as Part of a List

Figure 11: View Packages on Individual Pages

 2. On the GitHub page, on the right-hand side, click the link for the Latest version.

Figure 12: Find the Latest Version of the Package

 3. On the GitHub version page in the Assets section, click the package name to download the zip
file.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 69

Figure 13: Download the Package Zip File

 4. On the main extension GitHub page, review the documentation for the specific extension. Here
you will find supported platforms, prerequisites, and extension-specific installation and config-
uration instructions. The below instructions only cover where to place the extension files on the
orchestrator and building custom manifest.json files (changes to which aren’t needed for exten-
sions from GitHub unless you are customizing something), but not the details for creation of
custom certificate store types for the extension or any other customization specific to a given
extension.

Custom-built extensions can also be generated by end users using the Universal Orchestrator
NuGet package. Custom-built extensions for certificate store jobs and custom jobs are both
installed in the same way.

Once you have your custom-built extension ready, install it as follows:

 1. In the Keyfactor Command Management Portal or using the Keyfactor API, add a certificate
store type or custom job type for your custom-built extension, if applicable. See Adding or
Editing a Certificate Store Type in the Keyfactor Command Reference Guide or POST Custom
Job Types in the Keyfactor API Reference Guide.

 2. On the Universal Orchestrator server, locate the extensions directory within the install
directory. By default, this is:

Windows: C:\Program Files\Keyfactor\Keyfactor Orchestrator\extensions

Linux: /opt/keyfactor/orchestrator/extensions

11.4 Keyfactor Orchestrators Installation and Configuration Guide 70

 3. Under the extensions directory, create a new directory with an appropriate name for your
custom-built extension (e.g. MyExtension). This name is for reference only and does not need to
match any names used elsewhere.

 4. Place the DLL(s) created for your custom-built extension along with any other supporting files
needed for the extension in the new directory.

 5. In the directory for your custom-built extension, create a file called manifest.json if one has not
been provided with the extension. The manifest.json file must be placed in the same directory as
the DLL(s) for your extension.

 6. Using a text editor, edit the manifest.json file if needed and configure it appropriately for your
application.

Tip: This step is generally not needed for extensions downloaded from GitHub unless you
have opted to make customizations or not use the suggested short name when creating
the certificate store type.

Some things to keep in mind are:

 l The opening and closing lines of the file must match lines 1-3 and 8-10 here:

1 {
2 "extensions": {
3 "Keyfactor.Orchestrators.Extensions.IOrchestratorJobExtension": {
4 "Custom.MyJob": {
5 "assemblypath": "Keyfactor.Orchestrators.MyJob.dll",
6 "TypeFullName": "Keyfactor.Orchestrators.MyJob.MyJobExtension"
7 }
8 }
9 }

10 }

 l Each customized section of the file starts with either a custom job reference (e.g.
Custom.MyJob) or a certificate store reference (e.g. CertStores.MyStore.Inventory).

Custom jobs (beginning Custom) correspond to custom job types created with the
Keyfactor API POST /JobTypes/Custom method. For example, a custom job type with a
JobTypeName of MyJob would appear in the file as Custom.MyJob.

Certificate store jobs (beginning CertStores) correspond to certificate store types
created with the Keyfactor API POST /CertifiateStoreType method (see POST Certificate
Store Types in the Keyfactor API Reference Guide) or in the Keyfactor Command Manage-
ment Portal (see Adding or Editing a Certificate Store Type in the Keyfactor Command
Reference Guide). For example, a certificate store type with a Capability of MyStore
configured to do inventory, management and discovery, would have three separate

11.4 Keyfactor Orchestrators Installation and Configuration Guide 71

sections in the file as CertStores.MyStore.Inventory, CertStores.MyStore.Management,
and CertStores.MyStore.Discovery. An inventory section is required.

 l The assemblypath referenced in each section points to the DLL in the extensions
directory that corresponds to that job function. A single manifest file may include many
different capabilities if the extension performs more than one type of job (e.g. inventory
and management of certificates), such as is shown in the below example.

 l The TypeFullName referenced in each section corresponds to the name of the type that
resides inside of the DLL listed for the assembly path. A single manifest file may include
many different capabilities if the extension performs more than one type of job (e.g.
inventory and management of certificates), such as is shown in the below example.

 l Each section may optionally have a PreScript reference, which points to a script file on
the orchestrator machine that will run before the main job for the section executes.

 o For orchestrators installed on Windows, these will be PowerShell scripts. No
special configuration is needed other than entry of a path to the PowerShell script
in the PreScript field. The script may be placed anywhere on the orchestrator
machine. The orchestrator will need read permissions to the script.

 o For orchestrators installed on Linux, these will be Bash scripts. In order to use a
Bash script with the orchestrator, you must first register the Bash script driver in
the appsettings.json file. This file is found in the configuration directory. Edit the file
and add the following below the existing AppSettings configuration section in the
file (before the final closing bracket):

"extensions": {
 "Keyfactor.Orchestrators.ScriptDrivers.IScriptDriver": {
 "RegisteredScriptDriver": {
 "assemblypath": "Keyfactor.Orchestrators.BashDriver.dll",
 "TypeFullName": "Keyfactor.Orches-
trators.ScriptDrivers.BashDriver"
 }
 }
}

After the Bash script driver is registered, you may enter a path to the Bash script in
the orchestrator manifest.json file PreScript section. The script may be placed
anywhere on the orchestrator machine. The orchestrator will need read permissions
to the script.

Tip: If your script fails, this will cause the entire job to fail. You can use this to your
advantage if you'd like to fail the job under certain conditions by doing a Write-
Error on Windows or exit <error code> on Linux.

For more information about calling scripts from the orchestrator, contact your Keyfactor
representative.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 72

Note: The prescript and postscript functionality of the Keyfactor Universal Orches-
trator has been replaced by other functionality in Keyfactor Command such as that
provided by Keyfactor Command workflows (see Workflow Definitions in Keyfactor
Command Reference Guide). As a result, prescript and postscript functionality has
been deprecated and will be removed from a future release.

 l Each section may optionally have a PostScript reference, which points to a script file on
the orchestrator machine that will run after the main job for the section executes. See the
notes for script use under PreScript.

 l User-defined certificate store jobs support up to four job types—Inventory, Management,
Discovery, and Reenrollment. Each one of these job types should have a separate section
in the file.

{
 "extensions": {
 "Keyfactor.Orchestrators.Extensions.IOrchestratorJobExtension": {
 "CertStores.MyStore.Inventory": {
 "assemblypath": "Keyfactor.Orchestrators.MyStore.dll",
 "TypeFullName": "Keyfactor.Orches-
trators.MyStore.MyStoreInventoryJobExtension"
 },
 "CertStores.MyStore.Management": {
 "assemblypath": "Keyfactor.Orchestrators.MyStore.dll",
 "TypeFullName": "Keyfactor.Orches-
trators.MyStore.MyStoreManagementJobExtension",
 "PreScript": "C:\\Program Files\\Keyfactor\\Keyfactor Orches-
trator\\extensions\\MyStoreManagementPreScript.ps1",
 "PostScript": "C:\\Program Files\\Keyfactor\\Keyfactor Orches-
trator\\extensions\\MyStoreManagementPostScript.ps1"
 },
 "CertStores.MyStore.Discovery": {
 "assemblypath": "Keyfactor.Orchestrators.MyStore.dll",
 "TypeFullName": "Keyfactor.Orches-
trators.MyStore.MyStoreDiscoveryJobExtension"
 }
 }
 }
}

 7. Restart the Universal Orchestrator service (see Start the Universal Orchestrator Service on
page 81).

11.4 Keyfactor Orchestrators Installation and Configuration Guide 73

 8. In the Keyfactor Command Management Portal, re-approve the orchestrator. The orchestrator
will update to a status of new (if it had been approved previously) upon receiving updated capab-
ilities. See Orchestrator Management in the Keyfactor Command Reference Guide for inform-
ation on approving orchestrators.

Contact your Keyfactor representative for more information about custom-built solutions or to
obtain access to the NuGet packages required for development of Universal Orchestrator exten-
sions.

2.2.5.4 Configuring Script-Based Certificate Store Jobs

The Keyfactor Universal Orchestrator supports the option to implement custom-built certificate
store jobs using one or more scripts (PowerShell or Bash) rather than a full extension (see Installing
Custom-Built Extensions on page 68). To implement custom-built certificate store jobs in this way,
you need to create your scripts that will execute the certificate store actions (e.g. inventory, add
certificates, remove certificates) and a manifest.json file to reference the jobs and install them on
the orchestrator. Optionally, each certificate store action script can call a prescript and/or a post-
script to perform actions before or after the main action.

Note: The scripting method of running custom-built certificate store jobs cannot be used to
run other types of custom jobs. These are supported only with the use of a custom extension
(see Installing Custom-Built Extensions on page 68). However, both certificate store jobs and
custom jobs support the use of prescripts and postscripts (see Orchestrator Job Overview on
page 4).

To configure a set of custom-built certificate store scripts:

 1. On the Universal Orchestrator server, locate the scripts directory within the install directory. By
default, this is:

Windows: C:\Program Files\Keyfactor\Keyfactor Orchestrator\Scripts

Linux: /opt/keyfactor/orchestrator/Scripts

 2. Under the scripts directory, create a new directory with an appropriate name for your custom-
built certificate store job set (e.g. MyStore). This name matches the name of the job referenced
in the manifest.json file.

 3. Place the scripts created for your custom-built certificate store job set in the new directory.
Supported script file names are:

 l Add (e.g. Add.ps1 or Add.sh)
A management job to add a certificate to the certificate store.

 l Create (e.g. Create.ps1 or Create.sh)
A management job to create the certificate store if it does not already exist.

 l Discovery (e.g. Discovery.ps1 or Discovery.sh)
A discovery job.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 74

 l Inventory (e.g. Inventory.ps1 or Inventory.sh)
An inventory job.

 l Reenrollment (e.g. Reenrollment.ps1 or Reenrollment.sh)
A reenrollment job.

 l Remove (e.g. Remove.ps1 or Remove.sh)
A management job to remove a certificate from the certificate store.

 4. In order to use a Bash script with orchestrators installed on Linux, you must first register the
Bash script driver in the appsettings.json file. This file is found in the configuration directory.
Edit the file and add the following below the existing AppSettings configuration section in the file
(before the final closing bracket):

"extensions": {
 "Keyfactor.Orchestrators.ScriptDrivers.IScriptDriver": {
 "RegisteredScriptDriver": {
 "assemblypath": "Keyfactor.Orchestrators.BashDriver.dll",
 "TypeFullName": "Keyfactor.Orchestrators.ScriptDrivers.BashDriver"
 }
 }
}

 5. On the Universal Orchestrator server, locate the JobExtensionDrivers directory within the
extensions directory under the install directory. By default, this is:

Windows: C:\Program Files\Keyfactor\Keyfactor Orchestrator\exten-
sions\JobExtensionDrivers

Linux: /opt/keyfactor/orchestrator/extensions/JobExtensionDrivers

 6. In the JobExtensionDrivers directory, create a file called manifest.json or open the existing one.
There should be only one manifest.json file no matter how many script directories you create.

 7. Using a text editor, edit the manifest.json file and configure it appropriately for your custom-built
certificate store job set. Some things to keep in mind are:

11.4 Keyfactor Orchestrators Installation and Configuration Guide 75

 l The opening and closing lines of the file must match lines 1-3 and 8-10 here:

1 {
2 "extensions": {
3 "Keyfactor.Orchestrators.Extensions.IOrchestratorJobExtension": {
4 "CertStores.MyStore.Inventory": {
5 "assemblypath": "Keyfactor.Orches-

trators.JobExtensionDrivers.dll",
6 "TypeFullName": "Keyfactor.Orches-

trators.JobExtensionDrivers.InventoryJobExtensionDriver"
7 }
8 }
9 }

10 }

 l Each customized section of the file starts with a certificate store reference (e.g.
CertStores.MyStore.Inventory). Certificate stores jobs (beginning CertStores) corres-
pond to certificate store types created with the Keyfactor API POST /CertifiateStoreType
method (see POST Certificate Store Types in the Keyfactor API Reference Guide) or in
the Keyfactor Command Management Portal (see Certificate Store Type Operations:
Adding or Editing a Certificate Store Type in the Keyfactor Command Reference Guide).
For example, a custom certificate store type with a Capability of MyStore configured to do
inventory, management and discovery, would have three separate sections in the file as
CertStores.MyStore.Inventory, CertStores.MyStore.Management, and
CertStores.MyStore.Discovery. The capability reference (e.g. MyStore) must also match
the name you give to the directory where you place your scripts. An inventory section is
required.

 l The assemblypath referenced in each section points to the DLL in the extensions
directory of the Job Extensions Driver extension. This built-in extension is used to run
custom-built certificate store jobs as scripts. This value will be the same for all entries in
the file.

 l The TypeFullName referenced in each section corresponds to the name of the type that
resides inside of the DLL listed for the assembly path—the Job Extensions Driver exten-
sion in this case. This value will be the same for all entries in the file.

 l Each section may optionally have a PreScript reference, which points to an additional
script file on the orchestrator machine that will run before the main job for the section
executes.

Tip: If either your PreScript or PostScript fails, this will cause the entire job to fail.
You can use this to your advantage if you'd like to fail the job under certain condi-
tions by doing a Write-Error on Windows or exit <error code> on Linux.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 76

Note: The prescript and postscript functionality of the Keyfactor Universal Orches-
trator has been replaced by other functionality in Keyfactor Command such as that
provided by Keyfactor Command workflows (see Workflow Definitions in Keyfactor
Command Reference Guide). As a result, prescript and postscript functionality has
been deprecated and will be removed from a future release.

 l Each section may optionally have a PostScript reference, which points to an additional
script file on the orchestrator machine that will run after the main job for the section
executes.

 l Custom-built certificate store jobs support up to four job types—Inventory, Management,
Discovery, and Reenrollment. Each one of these job types should have a separate section
in the file.

{
 "extensions": {
 "Keyfactor.Orchestrators.Extensions.IOrchestratorJobExtension": {
 "CertStores.MyStore.Inventory": {
 "assemblypath": "Keyfactor.Orchestrators.JobExtensionDrivers.dll",
 "TypeFullName": "Keyfactor.Orches-
trators.JobExtensionDrivers.InventoryJobExtensionDriver"
 },
 "CertStores.MyStore.Management": {
 "assemblypath": "Keyfactor.Orchestrators.JobExtensionDrivers.dll",
 "TypeFullName": "Keyfactor.Orches-
trators.JobExtensionDrivers.InventoryJobExtensionDriver"
 "PreScript": "C:\\Program Files\\Keyfactor\\Keyfactor Orches-
trator\\scripts\\MyStore\\MyStoreManagementPreScript.ps1",
 "PostScript": "C:\\Program Files\\Keyfactor\\Keyfactor Orches-
trator\\scripts\\MyStore\\MyStoreManagementPostScript.ps1"
 },
 "CertStores.MyStore.Discovery": {
 "assemblypath": "Keyfactor.Orchestrators.JobExtensionDrivers.dll",
 "TypeFullName": "Keyfactor.Orches-
trators.JobExtensionDrivers.InventoryJobExtensionDriver"
 },
 "CertStores.MyStore.Reenrollment": {
 "assemblypath": "Keyfactor.Orchestrators.JobExtensionDrivers.dll",
 "TypeFullName": "Keyfactor.Orches-
trators.JobExtensionDrivers.InventoryJobExtensionDriver"
 }
 }

11.4 Keyfactor Orchestrators Installation and Configuration Guide 77

 }
}

 8. Restart the Universal Orchestrator service (see Start the Universal Orchestrator Service on
page 81).

 9. In the Keyfactor Command Management Portal, re-approve the orchestrator. The orchestrator
will update to a status of new (if it had been approved previously) upon receiving updated capab-
ilities. See Orchestrator Management in the Keyfactor Command Reference Guide for inform-
ation on approving orchestrators.

Contact your Keyfactor representative for more information about custom solutions or for assist-
ance creating custom scripts.

2.2.5.5 Configure Logging for the Universal Orchestrator

Keyfactor Universal Orchestrator provides extensive logging for visibility and troubleshooting. For
more information about troubleshooting, see Troubleshooting on page 131.

By default, the Keyfactor Universal Orchestrator places its log files in the logs directory under the
installed directory, generates logs at the INFO logging level and stores logs for two days before
deleting them. If you wish to change these defaults, follow the directions below for your installation
type.

Windows Installations

 1. On the Windows server where you wish to adjust logging, open a text editor (e.g. Notepad) using
the “Run as administrator” option.

 2. In the text editor, browse to open the Nlog.config file for the Universal Orchestrator. The file is
located in the configuration directory within the install directory, which is the following directory
by default:

C:\Program Files\Keyfactor\Keyfactor Orchestrator\configuration

 3. Your Nlog.config file may have a slightly different layout than shown here, but it will contain the
five fields highlighted in Figure 14: Universal Orchestrator on Windows NLog.config File. The
fields you may wish to edit are:

 l variable name="logDirectory" value="logs/"

The path to the log file location.

Important: If you choose to change the path for storage of the log files, you will
need to create the new directory (e.g. D:\KeyfactorLogs) and grant the Universal

11.4 Keyfactor Orchestrators Installation and Configuration Guide 78

Orchestrator service account under which the Keyfactor Orchestrator Service is
running full control permissions on this directory.

 l fileName="${logDirectory}/Log.txt"

The path and file name of the active orchestrator log file, referencing the logDirectory vari-
able.

 l archiveFileName="${logDirectory}/Log_Archive_{#}.txt"

The path and file name of previous days' orchestrator log files, referencing the logDir-
ectory variable. The orchestrator rotates log files daily and names the previous files using
this naming convention.

 l maxArchiveFiles="2"

The number of archive files to retain before deletion.
 l name="*" minlevel="Info" writeTo="logfile"

The level of log detail that should be generated and output to the log file. The default
INFO level logs error and some informational data but at a minimal level to avoid gener-
ating large log files. For troubleshooting, it may be desirable to set the logging level to
DEBUG or TRACE. Available log levels (in order of increasing verbosity) are:

 o OFF—No logging
 o FATAL—Log severe errors that cause early termination
 o ERROR—Log severe errors and other runtime errors or unexpected conditions that

may not cause early termination
 o WARN—Log errors and use of deprecated APIs, poor use of APIs, “almost” errors,

and other runtime situations that are undesirable or unexpected but not necessarily
“wrong”

 o INFO—Log all of the above plus runtime events (startup/shutdown)
 o DEBUG—Log all of the above plus detailed information on the flow through the

system
 o TRACE—Maximum log information—this option can generate VERY large log files

11.4 Keyfactor Orchestrators Installation and Configuration Guide 79

Figure 14: Universal Orchestrator on Windows NLog.config File

Linux Installations

 1. On the orchestrator machine where you wish to adjust logging, open a command shell and
change to the directory in which the orchestrator is installed. By default this is /opt/key-
factor/orchestrator.

 2. In the command shell in the directory in which the orchestrator is installed, change to the config-
uration directory.

 3. Using a text editor, open the nlog.config file in the configuration directory. Your nlog.config file
may have a slightly different layout than shown here, but it will contain the five fields highlighted
in the below figure. The fields you may wish to edit are:

 l variable name="logDirectory" value="logs/"

The path to the log file location.

Important: If you choose to change the path for storage of the log files, you will
need to create the new directory (e.g. /opt/kyflogs) and grant the Universal
Orchestrator service account under which the keyfactororchestrator-default
service is running full control permissions on this directory.

 l fileName="${logDirectory}/Log.txt"

The path and file name of the active orchestrator log file, referencing the logDirectory vari-
able.

 l archiveFileName="${logDirectory}/Log_Archive_{#}.txt"

The path and file name of previous days' orchestrator log files, referencing the logDir-
ectory variable. The orchestrator rotates log files daily and names the previous files using
this naming convention.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 80

 l maxArchiveFiles="2"

The number of archive files to retain before deletion.
 l name="*" minlevel="Info" writeTo="logfile"

The level of log detail that should be generated and output to the log file. The default
INFO level logs error and some informational data but at a minimal level to avoid gener-
ating large log files. For troubleshooting, it may be desirable to set the logging level to
DEBUG or TRACE. Available log levels (in order of increasing verbosity) are:

 o OFF—No logging
 o FATAL—Log severe errors that cause early termination
 o ERROR—Log severe errors and other runtime errors or unexpected conditions that

may not cause early termination
 o WARN—Log errors and use of deprecated APIs, poor use of APIs, “almost” errors,

and other runtime situations that are undesirable or unexpected but not necessarily
“wrong”

 o INFO—Log all of the above plus runtime events (startup/shutdown)
 o DEBUG—Log all of the above plus detailed information on the flow through the

system
 o TRACE—Maximum log information—this option can generate VERY large log files

Figure 15: Universal Orchestrator on Linux NLog.config File

2.2.5.6 Start the Universal Orchestrator Service

The Keyfactor Universal Orchestrator service runs on the orchestrator server and controls orches-
trator communications with the Keyfactor Command server. During the configuration process you
set the service account under which the orchestrator service will run. The service should start auto-
matically at the conclusion of the installation. To check to see if it’s running and start it if necessary,
follow the directions below for your installation type.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 81

Windows Installations

The service on Windows is added with a display name of Keyfactor Orchestrator Service (Default) by
default.

 1. On the Universal Orchestrator server, open the Services MMC.

 2. In the Services MMC confirm that the Keyfactor Orchestrator Service is set to a Startup Type of
Automatic (if desired). If the service is not running, click the green arrow to start it.

Figure 16: Universal Orchestrator Service

Note: Your service will have a name other than (Default) following Keyfactor Orchestrator
Service if you opted to use the ServiceSuffix installation parameter.

Linux Installations

The service on Linux is added as keyfactor-orchestrator-default by default, so when referencing it in
startup commands, it should be referenced by this name, including case. For example:

systemctl start [stop] [restart] [status] keyfactor-orchestrator-default.service

Note: Your service will have a name other than default following keyfactor-orchestrator- if
you opted to use the service-suffix installation parameter.

2.2.5.7 Change Service Account Passwords

The process for changing the passwords for the service accounts used by the Keyfactor Universal
Orchestrator varies for the different service accounts (see Create Service Accounts for the
Universal Orchestrator on page 11) and based on the type of authentication used for the service
account used to connect to Keyfactor Command.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 82

Important: Keyfactor highly recommends that you use strong passwords for any accounts or
certificates related to Keyfactor Command and associated products, especially when these
have elevated or administrative access. A strong password has at least 12 characters (more
is better) and multiple character classes (lowercase letters, uppercase letters, numeral, and
symbols). Ideally, each password would be randomly generated. Avoid password re-use.

Universal Orchestrator Service Account

The password for the service account that's used to run the Universal Orchestrator service on the
orchestrator server can be changed through standard operating system methods.

On a Linux server, this would be, for example, the command line passwd command executed for the
service account running the orchestrator service (by default keyfactor-orchestrator). So, this
command on a Linux server might be:

sudo passwd keyfactor-orchestrator

On a Windows server, if you've opted to run the Universal Orchestrator service as a custom service
account rather than Network Service, the password would need to be changed in Active Directory
or the local user store and in the Services MMC.

Figure 17: Change Service Account Password in Services MMC

11.4 Keyfactor Orchestrators Installation and Configuration Guide 83

Keyfactor Command Connect Service Account with Basic Authentication

For both Windows and Linux servers, the password change for the service account that's used to
make the connection to Keyfactor Command when Basic authentication is used follows this process:

 1. Change the password for the service account in Active Directory.

 2. On the Windows or Linux server, open a command window. For Windows, this should be a Power-
Shell window open using the “Run as Administrator” option. Change to the directory in which the
orchestrator is installed and locate the change_secrets script. By default, this is:

Windows: C:\Program Files\Keyfactor\Keyfactor Orchestrator\change_secrets.ps1
Linux: /opt/keyfactor/orchestrator/change_secrets.sh

 3. For Linux only, use the chmod command to make the change_secrets.sh script file executable.
The file ships in a non-executable state to avoid accidental execution. For example:

sudo chmod +x change_secrets.sh

 4. For Windows only, in the PowerShell window, run the following command to populate a variable
with the password for the service account:

$credKeyfactor = Get-Credential

Enter the appropriate username and password when prompted (the service account that the
orchestrator uses to connect to Keyfactor Command). Usernames should be given in
DOMAIN\username format.

Or, to avoid being prompted for credentials:

$keyfactorUser = "DOMAIN\mykeyfactorconnectusername"
$keyfactorPassword = "MySecurePassword"
$secKeyfactorPassword = ConvertTo-SecureString $keyfactorPassword -AsPlainText -
Force
$credKeyfactor = New-Object System.Management.Automation.PSCredential
($keyfactorUser, $secKeyfactorPassword)

 5. Run the password change script on the Universal Orchestrator server using the following para-
meters:

-WebCredential (Windows)

This is the credential object of the service account that the orchestrator uses to communicate
with Keyfactor Command that you created as per Create Service Accounts for the Universal
Orchestrator on page 11. It is provided as a PSCredential object.

For Basic authentication password change operations, this parameter is required.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 84

This parameter cannot be used in conjunction with the ClientSecret or ClientAuthPassword
parameter.

--username (Linux)

The service account that the orchestrator uses to communicate with Keyfactor Command
created as per Create Service Accounts for the Universal Orchestrator on page 11. It may be
entered either as username@domain (e.g. svc_kyforch@keyexample.com) or DOMAIN\\user-
name (e.g. KEYEXAMPLE\\svc_kyforch).

For Basic authentication password change operations, this parameter is required.

This parameter cannot be used in conjunction with the client-secret or client-auth-password
parameter.

--password (Linux)

The password for the service account that the orchestrator uses to communicate with
Keyfactor Command specified with the username parameter.

Important: The password for the service account the orchestrator uses to commu-
nicate with Keyfactor Command is stored in clear text in the orchestratorsecrets.json
file in the configuration directory under the installation directory for the orchestrator.
By default, this file is granted read/write permissions for the orchestrator service
account running the service on the Linux machine (keyfactor-orchestrator by default)
and no permissions for any other users. Access to this file should be strictly controlled.

This parameter is required if the username parameter is specified.

Tip: If you prefer to avoid providing the password at the command line (and storing it in
command history), use an input file instead as follows:

 a. Create a file that contains just your password. For example:
vi my_password_file

 b. When using the password parameter, reference the file. For example:
--password $(cat my_password_file)

 c. Delete the password file after the install is complete. For example:
rm my_password_file

-SecretsPath (Windows) or --secrets-path (Linux)

The full path and file name of the or the orchestratorsecrets.json file that stores the secret
information. This file is found in the configuration directory under the installation directory for

11.4 Keyfactor Orchestrators Installation and Configuration Guide 85

the Universal Orchestrator, which is by default:

Windows: C:\Program Files\Keyfactor\Keyfactor
Orchestrator\configuration\orchestratorsecrets.json
Linux: /opt/keyfactor/orchestrator/configuration/orchestratorsecrets.json

The location and file name for this file cannot be changed from the default. The parameter is
provided to allow for installations in non-standard locations or multiple locations on the same
server.

This parameter is required.

Windows example using basic authentication:

$keyfactorUser = "KEYXAMPLE\svc_kyforch"
$keyfactorPassword = "MySecurePassword123!"
$secKeyfactorPassword = ConvertTo-SecureString $keyfactorPassword -AsPlainText -Force
$credKeyfactor = New-Object System.Management.Automation.PSCredential ($keyfactorUser,
$secKeyfactorPassword)

.\change_secrets.ps1 -WebCredential $credKeyfactor -SecretsPath "C:\Program Files\Key-
factor\Keyfactor Orchestrator\configuration\orchestratorsecrets.json"

Saved secrets to 'C:\Program Files\Keyfactor\Keyfactor Orches-
trator\configuration\orchestratorsecrets.json'
Restarting service KeyfactorOrchestrator-Default

Linux example using basic authentication:

vi password_file_new

sudo ./change_secrets.sh --username svc_kyforch@keyexample.com --password $(cat password_
file_new) --secrets-path /opt/key-
factor/orchestrator/configuration/orchestratorsecrets.json

Saving secrets to '/opt/keyfactor/orchestrator/configuration/orchestratorsecrets.json'
Restarting service keyfactor-orchestrator-default

Keyfactor Command Connect Service Account with Token Authentication

For both Windows and Linux servers, the secret change for the client that's used to make the
connection to Keyfactor Command when token authentication is used follows this process:

11.4 Keyfactor Orchestrators Installation and Configuration Guide 86

 1. Change the secret for the client in your identity provider (see Create Service Accounts for the
Universal Orchestrator on page 11).

 2. On the Windows or Linux server, open a command window. For Windows, this should be a Power-
Shell window open using the “Run as Administrator” option. Change to the directory in which the
orchestrator is installed and locate the change_secrets script. By default, this is:

Windows: C:\Program Files\Keyfactor\Keyfactor Orchestrator\change_secrets.ps1
Linux: /opt/keyfactor/orchestrator/change_secrets.sh

 3. For Linux only, use the chmod command to make the change_secrets.sh script file executable.
The file ships in a non-executable state to avoid accidental execution. For example:

sudo chmod +x change_secrets.sh

 4. Run the password change script on the Universal Orchestrator server using the following para-
meters:

-ClientSecret (Windows)

This is the secret of the identity provider client used to authenticate the session with
Keyfactor Command (see Create Service Accounts for the Universal Orchestrator on
page 11).

For token authentication password change operations, this parameter is required.

This parameter cannot be used in conjunction with the WebCredential or ClientAuthPassword
parameter.

--client-secret (Linux)

This is the secret of the identity provider client used to authenticate the session with
Keyfactor Command (see Create Service Accounts for the Universal Orchestrator on
page 11).

For token authentication password change operations, this parameter is required.

This parameter cannot be used in conjunction with the username and password or client-auth-
password parameters.

Tip: If you prefer to avoid providing the secret at the command line (and storing it in
command history), use an input file instead as follows:

 a. Create a file that contains just your password. For example:
vi my_secret_file

11.4 Keyfactor Orchestrators Installation and Configuration Guide 87

 b. When using the password parameter, reference the file. For example:
--client-secret $(cat my_secret_file)

 c. Delete the password file after the install is complete. For example:
rm my_secret_file

-SecretsPath (Windows) or --secrets-path (Linux)

The full path and file name of the or the orchestratorsecrets.json file that stores the secret
information. This file is found in the configuration directory under the installation directory for
the Universal Orchestrator, which is by default:

Windows: C:\Program Files\Keyfactor\Keyfactor
Orchestrator\configuration\orchestratorsecrets.json
Linux: /opt/keyfactor/orchestrator/configuration/orchestratorsecrets.json

The location and file name for this file cannot be changed from the default. The parameter is
provided to allow for installations in non-standard locations or multiple locations on the same
server.

This parameter is required.

Windows example using token authentication:

.\change_secrets.ps1 -ClientSecret "aLru2IvZYJh0kFmHa36xs2xTLSpxf4ya" -SecretsPath
"C:\Program Files\Keyfactor\Keyfactor Orches-
trator\configuration\orchestratorsecrets.json"

Saved secrets to 'C:\Program Files\Keyfactor\Keyfactor Orches-
trator\configuration\orchestratorsecrets.json'
Restarting service KeyfactorOrchestrator-Default

Linux example using token authentication:

vi my_new_secret

sudo change_secrets.sh --client-secret $(cat my_new_secret) --secrets-path /opt/key-
factor/orchestrator/configuration/orchestratorsecrets.json

11.4 Keyfactor Orchestrators Installation and Configuration Guide 88

Saving secrets to '/opt/keyfactor/orchestrator/configuration/orchestratorsecrets.json'
Restarting service keyfactor-orchestrator-default

rm my_new_secret

Universal Orchestrator Running in a Container

When you’re running the Universal Orchestrator in a container, the method for password changes is
different and applies only to the Keyfactor Command connect service account. In this scenario, the
approach is to tear down the container and stand up a new one. As long as the new container
connects to Keyfactor Command with the same set of capabilities, the same service account user-
name, and the same orchestrator name (either the container hostname or the ORCHESTRATOR_
NAME parameter), the orchestrator will continue to operate seamlessly and will not need re-
approval.

To change the Keyfactor Command connect service account password for a container:

 1. Change the service account’s Active Directory password or change the secret for the client in
your identity provider (see Create Service Accounts for the Universal Orchestrator on page 11).

 2. Use an appropriate command to tear down the current orchestrator container (being sure you
know its configuration). For example:

docker compose [-f myconfig.yaml] down

Or:

kubectl delete -f myconfig.yaml]

 3. Stand up a new container referencing the same set of capabilities, the same service account
username, and the same orchestrator name (either the container hostname or the
ORCHESTRATOR_NAME parameter) if you want the orchestrator to continue seamlessly
without requiring re-approval (see Install the Universal Orchestrator in a Linux Container on
page 50).

2.2.5.8 Register a Client Certificate Renewal Extension

The Keyfactor Universal Orchestrator supports automated renewal of the certificate used for client
certificate authentication. It does this using a custom extension point interface on the orchestrator
that can be implemented by the end user. When the client certificate used for authentication by the
orchestrator is approaching expiration (within 180 days of expiration by default), the extension
generates a CSR with a private key and submits the CSR to Keyfactor Command for enrollment.
When Keyfactor Command returns the certificate to the orchestrator, it is paired with the private
key and installed for use as the client certificate for authentication. The extension both supplies the

11.4 Keyfactor Orchestrators Installation and Configuration Guide 89

information for the CSR and holds a dictionary of client parameters (see Build a Client Certificate
Renewal Extension on page 95).

To register a client authentication certificate renewal extension:

 1. Create the extension DLL (see Build a Client Certificate Renewal Extension on page 95).

 2. On the Universal Orchestrator server, locate the extensions folder under the install directory for
the orchestrator. By default, this is:

Windows: C:\Program Files\Keyfactor\Keyfactor Orchestrator\extensions
Linux: /opt/keyfactor/orchestrator/extensions

 3. Under the extensions directory, create a new directory for your extension (e.g. CertRotation).

 4. Place your DLL in the new CertRotation directory.

 5. Create a manifest.json file in the CertRotation directory with the following contents:

1 {
2 "extensions": {
3 "Keyfactor.Orchestrators.Extensions.IOrchestratorRegistrationUpdater": {
4 "RegisteredRegistrationUpdater": {
5 "assemblypath": "RegistrationUpdater.dll",
6 "TypeFullName": "Custom.Re-

gistration.Updaters.CustomRegistrationUpdater",
7 "config": {
8 "DnsSan": "orchestrator_name.keyexample.com",
9 "Subject": "CN=Client Certificate Authentication",

10 "DataCenter": "WestCoast",
11 "ForceRenewal": "False"
12 }
13 }
14 }
15 }
16 }

Only the values shown on lines 5-11 above should be modified from what is shown in this example:

 l The assemblypath is the name of your DLL.
 l The example Custom.Registration.Updaters portion of the TypeFullName must match the

namespace in your code. The example CustomRegistrationUpdater portion of the
TypeFullName must match the class in your code.

 l The config section is only needed if you wish to pass configuration values such as a
standard DNS SAN or certificate subject into the extension. Those shown here are
examples that match the sample code (see Build a Client Certificate Renewal Extension
on page 95).

11.4 Keyfactor Orchestrators Installation and Configuration Guide 90

The certificate renewal process occurs as follows:

 1. When each registration or session renewal of the orchestrator service occurs, the orchestrator,
in conjunction with underlying Keyfactor Command functionality, checks the expiration date of
the client authentication certificate and compares that with the defined client certificate
warning period (180 days) and expiry period (30 days) in Keyfactor Command to determine
whether a new certificate is needed.

Note: If the certificate is in the warning period, operations will continue while a new certi-
ficate is requested. If the certificate is in the expiry period or already expired, the orches-
trator will not be allowed to register a new session when the existing session expires or
the orchestrator service is restarted.
Orchestrator log messages indicating that a certificate is in the warning period look
similar to the following:

2021-09-17 12:45:59.7927 Keyfactor.Orchestrators.JobEngine.SessionClient [Warn] - Remote
CMS call 'https://keyfactor.keyexample.com/KeyfactorAgents/Session/Register' returned:
Agent certificate is approaching expiration and should be renewed. (A0100007)

Orchestrator log messages indicating that a certificate is in the expiry period look similar
to the following:

2021-09-09 17:27:37.5367 Keyfactor.Orchestrators.JobEngine.SessionClient [Error] - Remote
CMS call 'https://keyfactor.keyexample.com/KeyfactorAgents/Session/Register' returned:
Agent certificate is approaching expiration and must be renewed. (A0100008)
 2021-09-09 17:27:37.5642 Keyfactor.Orchestrators.JobEngine.SessionJobExecutor [Error] -
Error in SessionManager: Unable to register session.
 at Keyfactor.Orchestrators.JobEngine.SessionClient.RegisterAsync(IEnumerable`1 capab-
ilities, CancellationToken cancellationToken)
 at Keyfactor.Orchestrators.JobEngine.SessionJobExecutor.Execute(IJobExecutionContext
context)

 Error: A0100008
 Agent certificate is approaching expiration and must be renewed.
 at Keyfactor.Orchestrators.JobEngine.SessionClient.RegisterAsync(IEnumerable`1 capab-
ilities, CancellationToken cancellationToken)

Tip: The length of the warning period and expiry period are defined in Keyfactor
Command and are not user-configurable values. Contact support@keyfactor.com if you
need to modify these values.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 91

mailto:support@keyfactor.com

Tip: The orchestrator can be forced into the warning or expiry state before it reaches
these based on certificate lifetime using the POST /Agent-
s/SetAuthCertificateReenrollment method in the Keyfactor API or the Request Renewal
button on the Orchestrator Management page of the Keyfactor Command Management
Portal. A status of Request (1) is the equivalent of the warning period and a status of
Require (2) is the equivalent of the expiry period.

 2. When either the warning period or expiry period is identified, the Keyfactor Universal Orches-
trator will pass a value of true to the GetCSRInfo method (newOrches-
tratorCertRequestedByPlatform in the sample extension—see Build a Client Certificate Renewal
Extension on page 95). The extension generates a private key and a CSR using CSR information
(e.g. subject, key size) provided or generated by the extension (depending on the extension
design), returns the CSR to the orchestrator, which submits it to Keyfactor Command for certi-
ficate enrollment.

If the certificate is within the warning period but not within the expiry period, orchestrator
activity will be allowed to continue as usual. If the certificate is within the expiry period, a new
session will not be granted when the orchestrator requests a new session and orchestrator
activity will not be allowed to continue until the orchestrator acquires a new certificate. If the
certificate has expired, the certificate rotation cannot take place since the orchestrator cannot
authenticate to Keyfactor Command to complete the rotation.

Tip: If a certificate has expired or some other certificate problem is causing the orches-
trator not to be able to acquire a session, the orchestrator can be reset using either the
Reset button on the Orchestrator Management page in the Keyfactor Command Manage-
ment Portal or the POST /Agents/{id}/Reset method in the Keyfactor API. This removes
the certificate history and allows the orchestrator to register for a session with the certi-
ficate currently configured in the appsettings.json file under the configuration directory.
You will need to re-approve the orchestrator if you reset it.

 3. In Keyfactor Command, a certificate is issued based on:

 l The OrchestratorConstants.CertificateAttributes.CERTIFICATE_AUTHORITY and Orches-
tratorConstants.CertificateAttributes.CERTIFICATE_TEMPLATE values defined in the
custom registration handler enroll function.

 l If no values are supplied in the custom registration handler enroll function, the certificate
authority and template defined by the Certificate Authority For Submitted CSRs and
Template For Submitted CSRs application settings in the Keyfactor Command Manage-
ment Portal.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 92

Figure 18: Application Settings for Client Certificate Renewal

 4. Once the certificate is issued, it is returned to the orchestrator and married with the private key.
If certificate authentication is configured using a certificate stored in the local computer or
Universal Orchestrator service account user's personal store (Windows only), the orchestrator
updates the appsettings.json file with the thumbprint of the new certificate. The thumbprint is
stored in the AuthCertThumbprint value in the appsettings.json file (see Change Service
Account Passwords on page 82). If certificate authentication is configured using a PKCS12 file
stored in the file system, a PKCS12 file is generated and replaces the original PKCS12 file. The
randomly generated password for the PKCS12 file is updated in the orchestratorsecrets.json
file.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 93

Note: If certificate authentication is configured using a certificate stored in the local
computer personal store on Windows, when the new certificate is generated, it will be
placed in the service account user's personal store, not the local computer personal
store. This is true if the service is running as a domain account and if the service is
running as the default Network Service.

 5. With the orchestrator's next session registration or heartbeat, it will begin using the new certi-
ficate.

Tip: If you manually configured the orchestrator to renew the certificate using the POST
/Agents/SetAuthCertificateReenrollment method in the Keyfactor API or the Request
Renewal button on the Orchestrator Management page, that flag will be cleared when the
orchestrator successfully registers for a session or completes a heartbeat using the new
certificate.
Once a new session is established with the new certificate, the stored legacy thumbprint
for the replaced certificate will be removed from the database. This occurs whether or
not you opt to automatically revoke the old certificate and occurs before the certificate
revocation takes place. The legacy thumbprint is not cleared on a heartbeat with the new
certificate.

 6. If you've opted to enable the Revoke old Client Auth Certificate application setting (see Figure
18: Application Settings for Client Certificate Renewal) in Keyfactor Command, the previous
certificate for the orchestrator will be revoked automatically by Keyfactor Command once the
orchestrator has made a successful registered for a new session with the new certificate.

Important: The service account under which the Universal Orchestrator is operating
must have permissions to enroll for certificates from the CA and have at least the Enroll
CSR role permission for Certificate Enrollment and the Read role permission for Certi-
ficates in Keyfactor Command. If you've opted to enable automated revocation of the old
certificate, the service account must also have permissions to revoke certificates on the
CA and have at least the Revoke role permission for Certificates in Keyfactor Command.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 94

Figure 19: Keyfactor Command Permissions Required for Automatic Renewal and Revocation of Client Authentic-
ation Certificates

Build a Client Certificate Renewal Extension

The functionality to renew the certificate used by the Keyfactor Universal Orchestrator for authen-
tication is available via an extension point interface provided by Keyfactor. To implement a custom
extension, you will need to obtain the Keyfactor.Orchestrators.IOrchestratorRegistrationUpdater
nuget package from Keyfactor. Contact your Client Success Manager or support@keyfactor.com
for assistance with that.

To build a client certificate renewal extension:

 1. Create a project for the extension in your favorite integrated development environment (e.g.
Visual Studio).

11.4 Keyfactor Orchestrators Installation and Configuration Guide 95

mailto:support@keyfactor.com

 2. Import the Keyfactor.Orchestrators.IOrchestratorRegistrationUpdater nuget package into the
project.

 3. Consult the sample code to help you design your extension. A sample extension for the client
authentication registration updater interface is provided on the Keyfactor GitHub:

https://keyfactor.github.io/

 4. Build an assembly file (DLL file) containing the extension.

 5. Follow the instructions for registering the extension (see Register a Client Certificate Renewal
Extension on page 89).

2.3 Java Agent

The Keyfactor Java Agent allows organizations to run discovery jobs to locate Java keystores on
Windows and Linux systems and PEM certificate stores on Linux systems, inventory the certificates
found in them, and push new certificates out to them.

The system requirements for the Java Agent on Windows are:

 l 64-bit versions of Windows 8.1, Windows 10, and Windows Server 2019
 l 64-bit versions of Oracle Java or OpenJDK 8, 11 or 13
 l The WiX Toolset (http://wixtoolset.org/) for users wishing to build an MSI

Note: The path to the WiX executables needs to be added to the System PATH (e.g.
C:\Program Files (x86)\WiX Toolset v3.11\bin) to support this.

The system requirements for the Java Agent on Linux are:

 l Red Hat 6 or greater, CentOS 6 or greater, or Ubuntu 14 or greater
 l 64-bit versions of Oracle Java or OpenJDK 8, 11 or 13
 l JSVC on SysV style (init.d) systems

Important: The Keyfactor Java Agent will be deprecated in a future version of Keyfactor
Command. Customers are encouraged to begin planning a migration to the Keyfactor
Universal Orchestrator with the Remote File custom extension publicly available at:

https://github.com/Keyfactor/remote-file-orchestrator

For more information, see Installing Custom-Built Extensions in the Keyfactor Orchestrators
Installation and Configuration Guide.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 96

http://wixtoolset.org/
https://github.com/Keyfactor/remote-file-orchestrator

2.3.1 Preparing for the Java Agent

This section describes the steps that need to be taken prior to a Java Agent installation to install the
prerequisites, create the required supporting components, and gather the necessary information to
complete the Java Agent installation and configuration process.

2.3.1.1 Create Service Accounts for the Java Agent

The Java Agent makes use of up to two service accounts to allow it to communicate with the
Keyfactor Command server. These two service accounts work together to transfer information from
the Java Agent to the Keyfactor Command server. The two service accounts can be thought of as
players on two sides of a fence, with the service account for the Java Agent lobbing information over
the fence to the service account on the Keyfactor Command server side to catch and hand to the
Keyfactor Command server:

 l Java Agent Side
On the Java Agent side of the fence, you may use either a local account or an Active Directory
service account.

Windows

For domain-joined Windows machines, an Active Directory service account is typically used. For
non-domain-joined Windows machines, you may use a local account created on the Windows
machine as the service account instead of a domain account.

The service account under which the Keyfactor Java Agent service runs on Windows must be
granted permissions to “Log on as a service” through local security policy. This step is generally
done automatically as part of the installation scripts, but may need to be completed by hand in
certain environments or on certain operating systems. The service account needs sufficient
permissions to allow it to discover and inventory Java keystores and PEM certificate stores as
applicable (read permissions on the appropriate files and directories) and update the stores if
desired (write permissions on the files and directories in which the files are stored).

Important: During the installation process, you enter the Java agent service identity user-
name and password interactively in a PowerShell window to configure the service
account. PowerShell will not support the following characters in the service account pass-
word when used in this interface:

" $

If you need to support these characters in the password, you can re-enter the username
and password in the Services MMC after receiving an error in the PowerShell interface.

Linux

For the purposes of this documentation it is assumed that Linux machines will be non-domain
joined and will use a local account to run the Java Agent.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 97

For Linux systems, Keyfactor recommends running the service as an account other than root.
 l Keyfactor Command Server Side

On the Keyfactor Command server side of the fence, an Active Directory service account in the
primary Keyfactor Command server forest is used. This can be the same service account used
for other Keyfactor Command server services. This service account appears in the Management
Portal Orchestrator Management grid as the Identity for the Java Agent.

If the Java Agent is installed on a domain-joined machine in the same forest as the Keyfactor
Command server, the same Active Directory service account may be used on both sides of the
fence.

The service accounts need to be created prior to installation of the Java Agent software, and the
person installing the Java Agent software needs to know the domain, username and password of
each service account.

Important: Keyfactor highly recommends that you use strong passwords for any accounts or
certificates related to Keyfactor Command and associated products, especially when these
have elevated or administrative access. A strong password has at least 12 characters (more
is better) and multiple character classes (lowercase letters, uppercase letters, numeral, and
symbols). Ideally, each password would be randomly generated. Avoid password re-use.

2.3.1.2 Create a Group for Java Agent Auto-Registration (Optional)

Keyfactor Command can use an Active Directory group to support auto-registration of Java Agents.
Auto-registration is an optional feature that allows you to define the conditions under which a Java
Agent can automatically be approved for operation with the Keyfactor Command server without
administrator input, if desired. This is useful in environments hosting a large number of agents. There
are six Java Agent auto-registration roles that share the same AD group:

Java Keystore Discovery

Auto-register the Java Agent to allow it to run discovery tasks to locate Java keystores.

Java Keystore Inventory Reporting

Auto-register the Java Agent to allow it to inventory certificates in Java keystores.

Java Keystore Management

Auto-register the Java Agent to allow it to manage (add/remove) certificates in Java keystores.

PEM Cert Store Management Jobs

Auto-register the Java Agent to allow it to manage (add/remove) certificates in PEM certificate
stores.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 98

PEM Server Configuration Directive Parser

Auto-register the Java Agent to allow it to run discovery tasks to locate PEM certificate stores.

PEM Server Inventory

Auto-register the Java Agent to allow it to inventory certificates in PEM certificate stores.

The same Active Directory group must be used for all roles. All auto-registration settings must be
populated if any are to be used even if all features are not planned for use. For example, if you plan
to use PEM but not Java keystore functionality, you still need to populate the Java keystore auto-
registration settings to enable auto-registration for the Java Agent to function correctly.

Note: If all your agents will be connecting to Keyfactor Command as the same service
account, you can directly add that user in the auto-registration configuration and skip using a
group, if desired.
Although you can choose to enable auto-registration without user validation, allowing any
agent to register regardless of the user account under which the agent is running, user valid-
ation with either an Active Directory group or a specific Active Directory user is the more
secure option.

2.3.1.3 Configure Certificate Root Trust for the Java Agent

Keyfactor recommends using HTTPS to secure the channel between each Java Agent and the
Keyfactor Command server(s). This requires an SSL certificate configured in IIS on the Keyfactor
Command server(s). This certificate can either be a publicly-rooted certificate (e.g. from Symantec,
Entrust, etc.), or one issued from a private certificate authority (CA). If your Keyfactor Command
server is using a publicly rooted certificate, the Java Agent machine may already trust the certificate
root for this certificate. However, if you have opted to use an internally-generated certificate, your
Java Agent server may not trust this certificate. In order to use HTTPS for communications between
the Java Agent and the Keyfactor Command server with a certificate generated from a private CA,
you will need to import the certificate chain for the certificate into a Java CA certificate store on the
Java Agent server. This can be done automatically as part of the installation process. You will need
to have the root certificate available as a PEM-encoded format file when you run the installation
script.

2.3.1.4 Create Environment Variables for the Java Agent on Windows

The Keyfactor Java Agent determines the location of the current installed Java version on Windows
by checking the Windows system environment variables Path and JAVA_HOME. Depending on how
your version of Java was installed, these environment variables may or may not be set.

To check and set the environment variables for the Java Agent install:

 1. Identify your Java base directory (e.g. C:\Program Files\Java\jdk-13.0.2). This directory typic-
ally contains the versioning and release files. Copy this path to a text file for easy access.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 99

 2. Identify the location of the Java virtual machine library (e.g. C:\Program Files\Java\jdk-
13.0.2\bin\server\jvm.dll), and copy the path to the text file created in the previous step.

 3. Identity the location of the main Java executable (e.g. C:\Program Files\Java\jdk-13.0.2\bin\-
java.exe), and copy the path to the text file.

 4. As a user with local administrator permissions, use the search function to search for environment
and select the option to edit the system environment variables from the search results.

Figure 20: Search for System Environment Variables

 5. In the System Properties dialog on the Advanced tab, click Environment Variables.

 6. In the Environment Variables dialog in the System variables section at the bottom, scroll down to
locate the Path variable, highlight it and click Edit.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 100

Figure 21: Edit the System Path Environment Variable to Add the Path to Java

 7. In the Edit Environment Variable dialog, click New. On the newly added line, paste the path to
the main Java executable (e.g. C:\Program Files\Java\jdk-13.0.2\bin) that you saved earlier (do
not include the java.exe part) and click OK.

 8. If it doesn't exist already among the System variables, create the JAVA_HOME environment vari-
able—click New below the System variables box and, in the New System Variable dialog, type
JAVA_HOME in the Variable name field and paste the path to the Java base directory in the
Variable value field. If the field exists already but with a value that is not correct for the version
of Java you wish to use, click Edit and update the Variable value field with the appropriate Java
base directory.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 101

Figure 22: Add JAVA_HOME System Environment Variable

Important: When you run the install.ps1 script, you may be prompted to input the absolute
path to the Java Virtual Machine library. From the text file in which you saved paths, take the
path to the Java Virtual Machine library (e.g. C:\Program Files\Java\jdk-13.0.2\bin\server-
\jvm.dll) and input that string to complete the install.

2.3.2 Install the Java Agent on Windows

The Keyfactor Java Agent installation script offers the option to install the Java agent directly or use
the installation script to build an msi package that you can then use to install the Java agent on
multiple machines.

Note: If you have a previously installed version of the Keyfactor Java Agent on this server,
you need to uninstall it (see Uninstall the Java Agent on page 118) before installing a new
version.

To begin the Java agent installation on Windows, unzip the installation files and place them in a
temporary working directory.

 1. On the Windows machine on which you wish to install the Java agent or build the package, open
a PowerShell window using the “Run as administrator” option and change to the temporary

11.4 Keyfactor Orchestrators Installation and Configuration Guide 102

directory where you placed the installation files.

 2. In the PowerShell window, run the cms-java-agent-installer.bat file to begin the installation. You
will be prompted to answer several questions:

Username the Java Agent will connect as

This is the service account on the Keyfactor Command server side of the fence you created as
per Create Service Accounts for the Java Agent on page 97. It should be entered in the format
DOMAIN\username.

Password for the account that the Java Agent will connect as

This is the password for the service account on the Keyfactor Command server side of the
fence.

Hostname or address for the Keyfactor Command Agents server

This is the FQDN or IP address of the Keyfactor Command server running the Keyfactor
Command Agent Services role, which is installed as part of the Keyfactor Command Services
role. If you installed all the Keyfactor Command server roles together, this is the FQDN or IP
address of your Keyfactor Command server.

If you choose to use SSL to connect to the Keyfactor Command server, you'll need to enter a
hostname at this prompt that is found in the SSL certificate.

If you're using a non-standard port for IIS on your Keyfactor Command server, enter that here as
part of your hostname or IP address (e.g. keyfactor.keyexample.com:444).

Virtual directory for the Keyfactor Command Agents service URL

Press Enter to accept the default of KeyfactorAgents. Only enter an alternate virtual directory if
your Keyfactor Command server was configured with an alternate virtual directory for the
Keyfactor Command Agents service.

Connect to Keyfactor using SSL?

Press Enter to accept the default of Yes or enter No. The following instructions assume that you
answered Yes.

To connect to Keyfactor Command, the Java Agent needs to trust the SSL certi-
ficate presented by the Keyfactor Command Agents server

If your Keyfactor Command server is using a publicly rooted certificate, the server most likely
already trusts the certificate issuer, and you can press Enter here.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 103

If the certificate on the Keyfactor Command server was internally generated, you will need to
enter the full path and file name pointing to a file on the local server containing the PEM-
encoded root certificate for the certificate authority chain that issued the certificate (see
Configure Certificate Root Trust for the Java Agent on page 99).

The root certificate will be saved in a Java keystore file called trust.jks located in the Java
agent’s install directory (C:\Program Files\Keyfactor\Keyfactor Java Agent by default). The
default keystore password is changeit. Please contact Keyfactor technical support for assist-
ance in changing the default password, if desired.

This question will not appear if you answered no to the question about using SSL.

Verify Keyfactor Command connectivity?

Press Enter to accept the default of “Yes”. The Java agent will attempt to connect to the
Keyfactor Command server using the credentials provided to confirm that the server name,
agents URL, root trust, and provided credentials are valid. Enter “No” to skip this validation if
you don't have connectivity to the Keyfactor Command server at the time of installation.

Tip: If the installer terminates after this question without an error or with an error writing
the trust.jks file, it can be an indication that the path to the root certificate you provided
in the previous question was incorrect in some way (e.g. the path is not valid, the root
certificate doesn't match the certificate on the Keyfactor Command server, etc.)

Please specify the installation format

The options at this prompt are “local” or “msi”. If you press enter to accept “local”, the Java
agent will be installed locally. If you enter “msi”, the batch file will generate an msi after all the
questions have been answered. You can use this to install the Java agent on other Windows
systems with the installation questions already answered. The subsequent questions differ
depending on the answer given to this question. The following instructions include both local and
msi questions. You will not see all of these questions.

If you select “msi”, the Java agent will not be installed locally.

Path to the desired directory for installation (Local)

Press Enter to accept the default installation directory of C:\Program Files\Keyfactor\Keyfactor
Java Agent or enter an alternate path if desired. This question does not appear when generating
an msi.

Local user account the agent should run as \ User account on the target
machine that the agent should run as (Local\MSI)

Press Enter to accept the default of the local SYSTEM account for local installs (this is not an
option when generating an msi) or enter a specific user account—the service account for the

11.4 Keyfactor Orchestrators Installation and Configuration Guide 104

Java agent side of the fence you created as per Create Service Accounts for the Java Agent on
page 97. Domain user accounts should be entered in the format DOMAIN\username. You do not
need to enter the password for this user at this time. The username is entered at this time to
allow permissions to be configured appropriately.

Hostname the agent will connect to Keyfactor as (Local)

Press Enter to accept the default of the local machine's hostname as determined by a reverse
DNS lookup or, failing that, the value of the local environment variable for the computer name. If
desired, you can enter an alternative value to use as the hostname. This is the identifier for the
server on which you are installing the Java agent. This identifier can be in the form of a host-
name or FQDN, but you can use another unique identifier, if desired. This identifier appears in
the Keyfactor Command Management Portal on the orchestrators page. This question does not
appear when generating an msi.

Tip: When installing from an msi, you can specify a custom hostname by using the
AGENTNAME parameter. In order to use this option, you must install the msi from the
command line. For example:

msiexec /i C:\temp\cms-java-agent.msi AGENTNAME=jvagnt38.keyexample.com

Note: If the agent machine has a non-private address, you will most likely need to use
this option.

Directory where the agent logs should be placed (Local)

Press Enter to accept the default log directory of C:\CMS\logs or enter an alternate path if
desired. This question does not appear when generating an msi.

Number of log files that should be kept (Local\MSI)

Press Enter to accept the default of 7 log files or enter an alternate number if desired. Older
files are automatically deleted once more files than this have been generated.

Maximum size of each log file (Local\MSI)

Press Enter to accept the default log file size of 3 MB or enter an alternate value if desired.

Register AnyAgent components with the Keyfactor Java Agent? (Local)

Press Enter to accept the default value and begin the installation. If you would like to install one
or more Any Agent implementations, enter yes. In this case, you’ll be presented with a list of
custom certificate store types for which to provide an implementation. After choosing each one,
you’ll need to enter the path to the .jar file that implements the certificate store type. That .jar
file will be copied to the installation directory, under the libs folder. You’ll need to manually copy
any other dependent .jar files to that location as well. Note that this option is only available when

11.4 Keyfactor Orchestrators Installation and Configuration Guide 105

the Java agent is installed locally. This question does not appear when generating an msi.

 3. After answering the AnyAgent components question, the installation begins. Review the output
to be sure that no errors have occurred and then press any key to return to the PowerShell
prompt.

Figure 23: Keyfactor Java Agent Local Installation on Windows

 4. In the PowerShell window, change to the install directory within the directory in which you
installed the Java agent. If you installed in the default install directory, this path is:

C:\Program Files\Keyfactor\Keyfactor Java Agent\install

 5. In the PowerShell window, run the install.ps1 PowerShell script. Unless you selected SYSTEM as
the user the agent should run as, you will be prompted to enter the username (DOMAIN\user-
name format) and password of the account that will run the Keyfactor Java Agent service on the
local machine. This is the service account for the Java agent side of the fence you created as
per Create Service Accounts for the Java Agent on page 97. Press Enter without entering any
data to run the service under the local system credentials.

Note: The install.ps1 may fail with an error similar to the following on older versions of
Windows:

Method invocation failed because [System.Object[]] doesn't contain a method
named 'Replace'.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 106

If this occurs, you need to manually grant the service account under which the Keyfactor
Java Agent service will run the local "Log on as a service" permission and then run the
install.ps1 script again.

Tip: If you choose the “msi” option rather than the “local” option, the MSI file will be gener-
ated in the directory in which you executed the batch file.

2.3.3 Install the Java Agent on Linux

The Java Agent installation script offers the option to install the Java Agent directly or use the install-
ation script to build an RPM package that you can then use to install the Java Agent on multiple
machines.

Note: If you have a previously installed version of the Keyfactor Java Agent on this server,
you need to uninstall it (see Uninstall the Java Agent on page 118) before installing a new
version.

To begin the Java Agent installation on Linux, unzip the installation files and place them in a
temporary working directory.

 1. On the Linux machine on which you wish to install the Java Agent or build the package, at a
command shell change to the temporary directory where you placed the installation files.

 2. Use the chmod command to make the cms-java-agent-Installer.sh script executable. The file
ships in a non-executable state to avoid accidental execution. For example:

sudo chmod +x cms-java-agent-installer.sh

 3. In the command shell, run the cms-java-agent-Installer.sh script as root to begin the installation.
You will be prompted to answer several questions:

Username the Java Agent will connect as

This is the service account on the Keyfactor Command server side of the fence you created as
per Create Service Accounts for the Java Agent on page 97. It should be entered in the format
DOMAIN\username.

Password for the account that the Java Agent will connect as

This is the password for the service account on the Keyfactor Command server side of the
fence.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 107

Hostname or address for the Keyfactor Command Agents server

This is the FQDN or IP address of the Keyfactor Command server running the Keyfactor
Command Agent Services role, which is installed as part of the Keyfactor Command Services
role. If you installed all the Keyfactor Command server roles together, this is the FQDN or IP
address of your Keyfactor Command server.

If you choose to use SSL to connect to the Keyfactor Command server, you’ll need to enter a
hostname at this prompt that is found in the SSL certificate.

If you're using a non-standard port for IIS on your Keyfactor Command server, enter that here as
part of your hostname or IP address (e.g. keyfactor.keyexample.com:444).

Virtual directory for the Keyfactor Command Agents service URL

Press Enter to accept the default of KeyfactorAgents. Only enter an alternate virtual directory if
your Keyfactor Command server was configured with an alternate virtual directory for the
Keyfactor Command Agents service.

Connect to Keyfactor using SSL?

Press Enter to accept the default of Yes or enter No. The following instructions assume that you
answered Yes.

To connect to Keyfactor Command, the Java Agent needs to trust the SSL certi-
ficate presented by the Keyfactor Command Agents server…

If your Keyfactor Command server is using a publicly rooted certificate, the server most likely
already trusts the certificate issuer, and you can press Enter here.

If the certificate on the Keyfactor Command server was internally generated, you will need to
enter the full path and file name pointing to a file on the local server containing the PEM-
encoded root certificate for the certificate authority chain that issued the certificate (see
Configure Certificate Root Trust for the Java Agent on page 99).

The root certificate will be saved in a Java keystore file called trust.jks located in the Java
Agent’s install directory (/opt/keyfactor-java-agent by default). The default keystore password
is changeit. Please contact Keyfactor technical support for assistance in changing the default
password, if desired.

This question will not appear if you answered no to the question about using SSL.

Verify Keyfactor Command connectivity?

Press Enter to accept the default of “Yes”. The Java Agent will attempt to connect to the
Keyfactor Command server using the credentials provided to confirm that the server name,
agents URL, root trust, and provided credentials are valid. Enter “No” to skip this validation if
you don't have connectivity to the Keyfactor Command server at the time of installation.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 108

Tip: If the installer terminates after this question without an error or with an error writing
the trust.jks file, it can be an indication that the path to the root certificate you provided
in the previous question was incorrect in some way (e.g. the path is not valid, the root
certificate doesn't match the certificate on the Keyfactor Command server, etc.)

Please specify the installation format

The options at this prompt are “local” or “rpm”. If you press enter to accept “local”, the Java
Agent will be installed locally. If you enter “rpm”, the script will generate an rpm after all of the
questions have been answered. You can use this to install the Java Agent on other Linux
systems with the installation questions already answered. The subsequent questions differ
depending on the answer given to this question. The following instructions include both local and
rpm questions. You will not see all of these questions.

If you select “rpm”, the Java agent will not be installed locally.

Path to the desired directory for installation (Local)

Press Enter to accept the default installation directory of /opt/keyfactor-java-agent or enter an
alternate path if desired. This question does not appear when generating an rpm.

Local user account the agent should run as \ User account on the target
machine that the agent should run as (Local\RPM)

This is the service account for the Java Agent side of the fence you created as per Create
Service Accounts for the Java Agent on page 97. It should be entered as just the user name.
Entry of the password for this service account is not required. The username is entered at this
time to allow permissions to be configured appropriately.

Hostname the agent will connect to Keyfactor as (Local)

Press Enter to accept the default of the local machine's hostname as determined by a reverse
DNS lookup or, failing that, the value of the local environment variable for the computer name. If
desired, you can enter an alternative value to use as the hostname. This is the identifier for the
server on which you are installing the Java agent. This identifier can be in the form of a host-
name or FQDN, but you can use another unique identifier, if desired. This identifier appears in
the Keyfactor Command Management Portal on the orchestrators page. This question does not
appear when generating an rpm.

Full path to the desired buildroot directory for RPM package staging. Directory
must not exist. (RPM)

Press Enter to accept the default path of /temp under the current directory or enter an
alternate path if desired. This is a temporary location the build process will use while the
package is being created. This is not the directory where the final RPM file will be placed. This

11.4 Keyfactor Orchestrators Installation and Configuration Guide 109

question does not appear when installing locally.

Note: Ensure the path does not contain spaces. Any space in the java agent path causes
issues when building an rpm.

Tip: The RPM file will be generated in a subdirectory (rpmbuild/RPMS) of the home
directory of the user running the cms-java-agent-Installer.sh script. If you run the script
as root, this will be root’s home directory, so you may choose to run the script as a non-
root user if you plan to create an RPM.

Path the RPM will install to on the target machine (RPM)

Press Enter to accept the default installation directory of /opt/keyfactor-java-agent or enter an
alternate path if desired. This question does not appear when installing locally.

Architecture of the RPM target machine (RPM)

Press Enter to accept the default as determined by the machine on which the RPM is being
generated or enter an alternate architecture if desired. A separate RPM needs to be generated
with each required machine architecture. This question does not appear when installing locally.

Directory where the agent logs should be placed (Local\RPM)

Press Enter to accept the default log directory of /opt/cms-java-agent/logs or enter an
alternate path if desired.

Number of log files that should be kept (Local\RPM)

Press Enter to accept the default of 7 log files or enter an alternate number if desired. Older
files are automatically deleted once more files than this have been generated.

Maximum size of each log file (Local\RPM)

Press Enter to accept the default log file size of 3 MB or enter an alternate value if desired.

Register AnyAgent components with the Keyfactor Java Agent? (Local)

Press Enter to accept the default value and begin the installation. If you would like to install one
or more Any Agent implementations, enter yes. In this case, you’ll be presented with a list of
custom certificate store types for which to provide an implementation. After choosing each one,
you’ll need to enter the path to the .jar file that implements the certificate store type. That .jar
file will be copied to the installation directory, under the libs folder. You’ll need to manually copy
any other dependent .jar files to that location as well. Enter “Done” when you’ve finished listing
agent implementations. Note that this option is only available when the JavaAgent is installed
locally.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 110

 4. After answering the log file size question, the installation begins. Review the output to be sure
that no errors have occurred.

Figure 24: Keyfactor Java Agent Local Installation on Linux

 5. Keyfactor provides scripts that can be used to configure the Keyfactor Java Agent to start auto-
matically. These can be used on systems using startups based on SysV style (init.d) or systemd.
Other startup systems will need to be configured manually. If your machine has neither of these
startup systems, you will not be able to use these scripts to configure the Keyfactor Java Agent
to start automatically. The appropriate startup script to use depends on whether you are doing a
local install or installing from a previously generated RPM file.

Local Install

 a. In the command shell, change to the directory in which you installed the Java Agent. The
default install directory is:

/opt/keyfactor-java-agent

 b. Select the appropriate installation script for your startup system. The two available scripts
for local installs are:

install-init-service.sh
install-systemd-service.sh

11.4 Keyfactor Orchestrators Installation and Configuration Guide 111

Tip: The scripts with -with-configured-hostname in their names (e.g. install-
systemd-service-with-configured-hostname.sh) are for use with installations from
RPM packages and should not be used for local installs.

 c. Use the chmod command to make the desired script executable. The file ships in a non-
executable state to avoid accidental execution. For example:

sudo chmod +x install-systemd-service.sh

 d. Run the appropriate shell script as root. This will add the keyfactor-java-agent as a
service, which you can then stop and start using the standard service stop and start
commands. For example:

service keyfactor-java-agent restart
systemctl restart keyfactor-java-agent.service

Install from RPM

 a. Locate the RPM file on the machine on which it was generated and copy it to the machine
on which you wish to install the Java agent.

Tip: The RPM file is generated in a subdirectory (rpmbuild/RPMS) of the home
directory of the user running the cms-java-agent-Installer.sh script. If you run the
script as root, this will be root’s home directory.

 b. Execute the RPM as root. For example:

sudo rpm -ivh keyfactor-java-agent-8.6.0-1.i686.rpm

 c. In the command shell, change to the directory in which you installed the Java Agent. The
default install directory is:

/opt/cms-java-agent

 d. There are four possible installation scripts for installation from RPM packages:

install-init-service.sh
install-init-service-with-configured-hostname.sh
install-systemd-service.sh
install-systemd-service-with-configured-hostname.sh

Select the appropriate installation script type for your startup system (init or systemd). The
versions of the scripts that contain a reference to with-configured-hostname in the file
name allow you to enter a custom agent name (see Hostname the agent will connect to

11.4 Keyfactor Orchestrators Installation and Configuration Guide 112

Keyfactor as (Local) on page 109). The versions without this reference will use the system
hostname as the agent name.

 e. Use the chmod command to make the desired script executable. The file ships in a non-
executable state to avoid accidental execution. For example:

sudo chmod +x install-systemd-service-with-configured-hostname.sh

 f. Run the appropriate shell script as root. You will be prompted to answer questions specific
to the machine on which the Java agent is being installed—the hostname or other identifier
for the machine (see Hostname the agent will connect to Keyfactor as (Local) on page 109)
if you used a with-configured-hostname script and the username and password for the
service account that will connect the agent to Keyfactor Command (see Username the
Java Agent will connect as on page 107).

 g. Change the ownership on the file containing the startup credentials to the local user that
the agent will run as. This file is found in the config directory under the installed directory
and is called install.creds. For example:

sudo chown kyfuser /opt/cms-java-agent/config/install.creds

 h. The install shell script adds the keyfactor-java-agent as a service, which you can then stop
and start using the standard service stop and start commands. You may need to restart the
service after changing the ownership on the credentials file. For example:

service keyfactor-java-agent restart
systemctl restart keyfactor-java-agent.service

Tip: If desired, you can pass the responses to the questions the installer asks in from a file.
For example, for a full install (not working from an RPM file you previously created), create a
file that contains values something like this (notice lines 2 and 3 match—the installer requires
entry of the password twice):

1 KEYEXAMPLE\svc_kyfjava
2 MyVerySecurePassword
3 MyVerySecurePassword
4 keyfactor.keyexample.com
5 KeyfactorAgents
6 Yes
7 /tmp/CorpRoot.crt
8 Yes
9 local

10 /opt/keyfactor-java-agent
11 kyfuser

11.4 Keyfactor Orchestrators Installation and Configuration Guide 113

12 jvagnt162.keyexample.com
13 /opt/keyfactor-java-agent/logs
14 7
15 "3 MB"
16 No

Note that the values needed in your input file will vary depending on how you answer some of
the questions. For example, the first Yes shown above will go in response to the question of
whether to use SSL for the connection to Keyfactor Command. If you answer No here, you
will not receive the question about needing a root certificate, and so the path to a root certi-
ficate shown after this will not correctly match the next question. The script will fail.

Place the file in the same directory as the install script. Then, execute the install script like
this:

sudo ./cms-java-agent-installer.sh < myinputfile.txt

2.3.4 Optional Configuration

Once the installation scripts are complete, the Java Agent should be running and ready to commu-
nicate with the Keyfactor Command server.

Important: Java Agent tasks will not run until you complete the Java Agent configuration by
making the appropriate configuration changes in the Keyfactor Command Management
Portal. See Orchestrators in the Keyfactor Command Reference Guide for instructions on
approving the Java Agent in the Keyfactor Command Management Portal on the Orches-
trators->Auto-Registration and Orchestrators->Management pages, and on configuring certi-
ficate stores on the Certificate Management->Certificate Stores page (see Certificate Store
Operations: Adding or Modifying a Certificate Store and Certificate Store Discovery in the
Keyfactor Command Reference Guide).

2.3.4.1 Configure Logging for the Java Agent

By default, the Java Agent places its log files in the C:\CMS\logs directory on Windows and the
/opt/keyfactor-java-agent/logs directory on Linux, generates logs at the Info logging level and
stores seven 3 MB logs before deleting them (how long this will be will depend on the logging level
and the volume of usage the Java Agent is receiving).

If you wish to change these defaults after the installation is complete on Windows:

11.4 Keyfactor Orchestrators Installation and Configuration Guide 114

 1. On the Java Agent machine where you wish to adjust logging, open a text editor (e.g. Notepad)
using the “Run as administrator” option.

 2. In the text editor, browse to open the log4j2.xml file in the config directory under the directory in
which you installed the Java Agent. By default, the file is located in the following directory:

C:\Program Files\Keyfactor\Keyfactor Java Agent\config

 3. Your log4j2.xml file may have a slightly different layout than shown here, but it will contain the
four fields highlighted in the below figure. The fields you may wish to edit are:

fileName="C:\CMS\logs\CMS-Java.txt"

The path and file name of the active Java Agent log file.

Important: If you choose to change the path for storage of the log files, you will need to
create the new directory (e.g. D:\KeyfactorLogs) and grant the service account under
which the Keyfactor Java Agent service is running full control permissions on this
directory.

size="3 MB"

The maximum file size of each log file. After a log file reaches the maximum size, it is rotated to
an archive file name and a new log file is generated.

max="7"

The number of archive files to retain before deletion.

level="info"

The level of log detail that should be generated. The default info level logs error and some inform-
ational data but at a minimal level to avoid generating large log files. For troubleshooting, it may
be desirable to set the logging level to debug or trace. Available log levels (in order of
increasing verbosity) are:

 l OFF – No logging
 l FATAL – Log severe errors that cause early termination
 l ERROR – Log severe errors and other runtime errors or unexpected conditions that may

not cause early termination
 l WARN – Log errors and use of deprecated APIs, poor use of APIs, almost errors, and

other runtime situations that are undesirable or unexpected but not necessarily wrong
 l INFO – Log all of the above plus runtime events (startup/shutdown)
 l DEBUG – Log all of the above plus detailed information on the flow through the system
 l TRACE – Maximum log information—this option can generate VERY large log files

11.4 Keyfactor Orchestrators Installation and Configuration Guide 115

Figure 25: Configure Logging for Keyfactor Java Agent on Windows

If you wish to change these defaults after the installation is complete on Linux:

 1. On the Java Agent machine where you wish to adjust logging, open a command shell and change
to the directory in which the Java Agent is installed. By default this is /opt/keyfactor-java-agent.

 2. In the command shell in the directory in which the Java Agent is installed, change to the config
directory.

 3. Using a text editor, open the log4j2.xml file in the config directory. Your log4j2.xml file may have
a slightly different layout than shown here, but it will contain the four fields highlighted in the
below figure. The fields you may wish to edit are:

fileName="/opt/keyfactor-java-agent/logs/CMS-Java.txt"

The path and file name of the active Java Agent log file.

Important: If you choose to change the path for storage of the log files, you will need to
create the new directory (e.g. /opt/javalogs) and grant the service account under which
the Keyfactor Java Agent service is running full control permissions on this directory.

size="3 MB"

The maximum file size of each log file. After a log file reaches the maximum size, it is rotated to
an archive file name and a new log file is generated.

max="7"

The number of archive files to retain before deletion.

level="info"

The level of log detail that should be generated. The default INFO level logs error and some
informational data but at a minimal level to avoid generating large log files. For troubleshooting,
it may be desirable to set the logging level to DEBUG or TRACE. Available log levels (in order of
increasing verbosity) are:

11.4 Keyfactor Orchestrators Installation and Configuration Guide 116

 l OFF – No logging
 l FATAL – Log severe errors that cause early termination
 l ERROR – Log severe errors and other runtime errors or unexpected conditions that may

not cause early termination
 l WARN – Log errors and use of deprecated APIs, poor use of APIs, almost errors, and

other runtime situations that are undesirable or unexpected but not necessarily wrong
 l INFO – Log all of the above plus runtime events (startup/shutdown)
 l DEBUG – Log all of the above plus detailed information on the flow through the system
 l TRACE – Maximum log information—this option can generate VERY large log files

Figure 26: Configure Logging for Keyfactor Java Agent on Linux

2.3.4.2 Start the Keyfactor Java Agent Service

The Keyfactor Java Agent service runs on the Java Agent machine and controls discovery, inventory
and certificate store update tasks. During the Java Agent configuration process you set the service
account under which the Keyfactor Java Agent service will run. The service should start auto-
matically at the conclusion of the installation scripts.

To check to see if the Keyfactor Java Agent service is running and start it if necessary on Windows:

 1. On a Windows Java Agent server, open the Services MMC.

 2. In the Services MMC confirm that the Keyfactor Java Agent service is set to a Startup Type of
Automatic (if desired). If the service is not running, click the green arrow to start it.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 117

Figure 27: Keyfactor Java Agent Service on Windows

Service startup and shutdown procedures vary by Linux implementation and version depending on
the startup system. The service on Linux is added as keyfactor-java-agent, so when referencing it in
startup commands, it should be referenced by this name, including case. For example:

service keyfactor-java-agent start [stop] [restart]
systemctl start [stop] [restart] [status] keyfactor-java-agent.service

Once you have finished the Java keystore and PEM certificate store inventory configuration using
the Keyfactor Command Management Portal and have imported certificates from the stores, you can
use the Certificate Search feature in the Keyfactor Command Management Portal to review the
certificate store certificates. See Certificate Search and Collections in the Keyfactor Command
Reference Guide for information on using the Certificate Search feature.

2.3.4.3 Uninstall the Java Agent

To uninstall the Java Agent on Linux.

 1. On the Linux machine on which the Java Agent is installed, run the command to stop the service.

sudo systemctl stop keyfactor-java-agent.service

 2. Run the command to remove the service

sudo systemctl disable keyfactor-java-agent.service

 3. After steps 1 & 2 are executed, it is safe to manually remove the Java Agent folder (default loca-
tion is /opt/keyfactor-java-agent/).

11.4 Keyfactor Orchestrators Installation and Configuration Guide 118

2.4 Bash Orchestrator

SSH supports a wide variety of authentication mechanisms. Often, enterprises fall back to simple
username and password at least some of the time due to the complexities of key management for
key-based authentication. Without key management, SSH keys tend to multiply, and you can quickly
lose track of who has access to what where. The Keyfactor Bash Orchestrator is designed to allow
organizations to inventory and manage secure shell (SSH) keys across the enterprise.

Important: SSH Key Management licensing is required to use any of the functionality outlined
in the Keyfactor Bash Orchestrator documentation. Contact support@keyfactor.com for
assistance with obtaining the proper licenses.

The orchestrator runs on Linux servers and can be operated in two possible modes:

 l The orchestrator is used in inventory only mode to perform discovery of SSH public keys and
associated Linux user accounts across multiple configured targets. When used in inventory and
publish policy mode, the orchestrator:
 o Scans the authorized_keys files of all current users on each configured server.

Note: OpenSSH maintains a file for each user that contains the public keys author-
ized to connect via SSH. By default, this file is named authorized_keys. In this docu-
ment, we refer to this file as authorized_keys, however in your environment, this file
may have a different name. The file name used in a given environment is defined in the
AuthorizedKeysFile setting in the OpenSSH sshd_config file.

 o Aggregates all public key data per Linux user logon.
 o Reports aggregate key and logon data back to Keyfactor Command.

Figure 28: SSH Key Discovery Flow

 l When operated in inventory and publish policy mode, the orchestrator can be used to add
SSH public keys and Linux user accounts on targets and remove rogue keys that appear without
authorization. Figure 29: SSH User Key Management Flow shows the flow from a user requesting

11.4 Keyfactor Orchestrators Installation and Configuration Guide 119

mailto:support@keyfactor.com

a new key pair to the public key being placed on a target server to allow the user to connect to
the server via SSH. The flow is similar for requesting a key pair for a service, though the request
is made by an administrator through a different interface in the Keyfactor Command Management
Portal. When used in inventory and publish policy mode, policies are published to the orches-
trator from the Keyfactor Command server following this flow:
 o The Keyfactor Command server determines what content needs to go into the authorized_

keys files for each logon on each target server. Content includes keys and associated
comments aggregated from all servers where that key was found. For example, if a given
public key exists on three different servers for the same user but in the original authorized_
keys files the key is associated with a different comment on each server, when Keyfactor
Command publishes the key down to the servers, it will be published with an aggregated
comment string (all three comments together in each authorized_keys file).

 o Aggregate logon and key information pushed down to each orchestrator target.
 o Orchestrator determines where to place key information, builds the file, and overwrites the

existing file with the new one. The process is done in this way to enforce policy and prevent
rogue keys from being placed in authorized_keys files.

 o Orchestrator informs Keyfactor Command of the success or failure of each machine logon
combination.

Figure 29: SSH User Key Management Flow

2.4.1 Preparing for the Keyfactor Bash Orchestrator

This section describes the steps that need to be taken prior to a Keyfactor Bash Orchestrator install-
ation to install the prerequisites, create the required supporting components, and gather the neces-
sary information to complete the orchestrator installation and configuration process.

2.4.1.1 System Requirements

The Keyfactor Bash Orchestrator is supported on the following operating systems:

11.4 Keyfactor Orchestrators Installation and Configuration Guide 120

 l Oracle Linux 7 or higher
 l Red Hat Enterprise 7 or higher
 l Ubuntu 16 or higher

The minimum specs are:

 l 2GB RAM
 l 1 2GHz Processor
 l 20GB disk space

Note: As more servers are added to be orchestrated by the orchestrator, increasing those
specs will improve performance.

Required Applications

The following applications are required:

systemd

The orchestrator requires a Linux server that uses the systemd service manager. You can use the
following command to test whether a system is running systemd:

ps -p 1

bash

The orchestrator can only be installed on a Linux server that is running bash version 4.3 or higher.
You can use the following command to check the bash version of a server:

bash --version

For systems running an older version of bash, you may be able to successfully operate these as
control targets (see Install Remote Control Targets on page 128).

Note: The default version of bash on Red Hat Enterprise 7 is 4.2. If you're using this platform
and your bash version has not already been updated, this will need to be done.

curl

The orchestrator can only be installed on a Linux server that has curl installed. You can use the
following command to check the curl version of a server:

curl --version

11.4 Keyfactor Orchestrators Installation and Configuration Guide 121

This is a requirement for orchestrators only; curl does not need to be installed on control targets
(see Install Remote Control Targets on page 128).

2.4.1.2 Create a Service Account for the Keyfactor Bash Orchestrator

The Keyfactor Bash Orchestrator uses a service account in the Active Directory domain where the
Keyfactor Command server resides to allow it to communicate with Keyfactor Command. This can be
the same service account used for other Keyfactor Command server services. This service account
appears in the Management Portal as the Identity on the Orchestrator Management grid for the
Keyfactor Bash Orchestrator.

The service account needs to be created prior to installation of the Keyfactor Bash Orchestrator
software, and the person installing the Keyfactor Bash Orchestrator software needs to know the
domain, username and password of the service account.

Important: Keyfactor highly recommends that you use strong passwords for any accounts or
certificates related to Keyfactor Command and associated products, especially when these
have elevated or administrative access. A strong password has at least 12 characters (more
is better) and multiple character classes (lowercase letters, uppercase letters, numeral, and
symbols). Ideally, each password would be randomly generated. Avoid password re-use.

During installation of the orchestrator, a local Linux user account is created automatically as an iden-
tity under which the orchestrator service will operate. This allows the orchestrator to run as a non-
root user. On servers on which you install the orchestrator directly, the following Linux user account
is created:

keyfactor-bash

On servers configured as remote control targets, the following Linux user account is created:

keyfactor-bash-orchestrator-svc

These users are granted access to read authorized_keys files for inventory purposes and to update
authorized_keys files when the orchestrator is operating in inventory and publish policy mode using
sudo. On install, modifications are made to the sudo configuration with the addition of a file in the
/etc/sudoer.d directory granting the orchestrator user select sudo rights. The commands the
service account user may be granted the right to use via sudo include:

adduser, awk, cat, chmod, chown, flock, gpasswd, ls, mkdir, restorecon, rm, sed, tee,
test, touch, usermod

2.4.1.3 Create a Group for Auto-Registration (Optional)

Keyfactor Command can use an Active Directory group to support auto-registration of Keyfactor
Bash Orchestrator. Auto-registration is an optional feature that allows you to define the conditions
under which a Keyfactor Bash Orchestrator can automatically be approved for operation with the

11.4 Keyfactor Orchestrators Installation and Configuration Guide 122

Keyfactor Command server without administrator input, if desired. This is useful in environments
hosting a large number of orchestrators or if you wish to automatically add orchestrators to server
groups and add them as servers in the Management Portal as you install them. The auto-registration
role used by the Keyfactor Bash Orchestrator is called Secure Shell Management.

Add the service account or service accounts under which the orchestrators will communicate with
Keyfactor Command to this group.

Note: If all your orchestrators will be connecting to Keyfactor Command as the same service
account, you can directly add that user in the auto-registration configuration and skip using a
group, if desired.
Although you can choose to enable auto-registration without user validation, allowing any
orchestrator to register regardless of the user account under which the orchestrator is
running, user validation with either an Active Directory group or a specific Active Directory
user is the more secure option.

2.4.1.4 Certificate Root Trust for the Keyfactor Bash Orchestrator

Keyfactor recommends using HTTPS to secure the channel between each Keyfactor Bash Orches-
trator and the Keyfactor Command server(s). This requires an SSL certificate configured in IIS on
the Keyfactor Command server(s). This certificate can either be a publicly-rooted certificate (e.g.
from Symantec, Entrust, etc.), or one issued from a private certificate authority (CA). If your
Keyfactor Command server is using a publicly rooted certificate, the orchestrator machine may
already trust the certificate root for this certificate. However, if you have opted to use an internally-
generated certificate, your orchestrator server may not trust this certificate. In order to use HTTPS
for communications between the orchestrator and the Keyfactor Command server with a certificate
generated from a private CA, you will need to import the certificate chain for the certificate into the
orchestrator's root certificate store. This can be done automatically as part of the installation
process. You will need to have the root certificate available as a PEM-encoded format file when you
run the installation script.

2.4.2 Install the Keyfactor Bash Orchestrator

To begin the Keyfactor Bash Orchestrator installation, place the installation files in a temporary
working directory on the Linux server and:

 1. On the Linux machine on which you wish to install the main orchestrator, in a command shell
change to the temporary directory where you placed the installation files.

 2. Use the chmod command to make the following script files executable. The files ship in a non-
executable state to avoid accidental execution.

 l [yourpath]/heartbeat.sh
 l [yourpath]/static-analysis.sh
 l [yourpath]/syncjob.sh
 l [yourpath]/Service/keyfactor-bash-orchestrator.sh

11.4 Keyfactor Orchestrators Installation and Configuration Guide 123

 l [yourpath]/Service/systemd/configure-systemd.sh
 l [yourpath]/Service/systemd/stop.sh
 l [yourpath]/Installation/install.sh
 l [yourpath]/Installation/remoteinstall.sh
 l [yourpath]/Installation/uninstall.sh

For example, this command will add the executable flag to every file with a .sh extension in the
/tmp/BashOrchestrator directory and all its sub-directories:

sudo find /tmp/BashOrchestrator -type f -iname "*.sh" -exec chmod +x {} \;

 3. In the command shell, run the Installation/install.sh script as root using the following syntax to
begin the installation:

-n, --username <service account name>

This is the service account that the orchestrator uses to communicate with Keyfactor Command
that you created as per Create a Service Account for the Keyfactor Bash Orchestrator on
page 122. It should be entered in the format username@domain (e.g. svc_
sshorch@keyexample.com). This parameter is required.

-u, --url <Keyfactor Command agents URL>

This is the URL to the Agent Services endpoint on the Keyfactor Command server running the
Keyfactor Command Agent Services role, which is installed as part of the Keyfactor Command
Services role. If you installed all the Keyfactor Command server roles together, this is the URL
for your Keyfactor Command server with /KeyfactorAgents after the server's IP or FQDN (e.g.
https://keyfactor.keyexample.com/KeyfactorAgents). If you choose to use SSL to connect to
the Keyfactor Command server, you’ll need to enter a URL that contains a hostname that is
found in the SSL certificate. This parameter is required.

Tip: If your Keyfactor Command server was configured with an alternate virtual directory
for the Keyfactor Command Agents Services endpoint, you will need to enter that in the
URL rather than /KeyfactorAgents.

-p, --password <your-secure-password>

This is the password for the orchestrator service account. If you leave this parameter out, you
will be prompted to enter this password.

-s, --ssl

Specifying this parameter causes the orchestrator to use SSL for communications with
Keyfactor Command. Leave out this parameter if you prefer not to use SSL. This parameter

11.4 Keyfactor Orchestrators Installation and Configuration Guide 124

does not take any arguments.

-t, --trusted-root </path/root-filename>

If your Keyfactor Command server is using a publicly rooted certificate, you do not need to use
this option. If the certificate on the Keyfactor Command server was internally generated, you will
need to use this option to specify the full path and file name of the file containing the root certi-
ficate for the certificate authority that issued the certificate (e.g. -t /tmp/myroot.crt). See Certi-
ficate Root Trust for the Keyfactor Bash Orchestrator on page 123.

-i, --server-group-id <GUID of existing SSH server group>

If desired, you may specify this parameter to automatically add the server to an existing server
group in Keyfactor Command. The server group must be specified by group ID (e.g. -i 74a9afcc-
087d-423a-a331-06686427fdd9). You can find a server group's ID by editing the server group
record in the Keyfactor Command Management Portal. This function is only supported if you
have enabled auto-registration for SSH (see Create a Service Account for the Keyfactor Bash
Orchestrator on page 122).

Figure 30: Find the Server Group ID

-c, --client-machine-name <client name>

Specifying this parameter allows you to override the client name the orchestrator would by
default use to register itself in Keyfactor Command. By default, the orchestrator uses the
results from a hostname lookup for the server's name. See the example output below where the
name passed into Keyfactor Command (appsrvr80-SSH.ubuntu.keyexample.com) differs from
the name used in the SSH key comment for the local Linux user (appsrvr80.keyexample.com).

11.4 Keyfactor Orchestrators Installation and Configuration Guide 125

-d, --use-sssd

This is required. You must explicitly specify whether or not you want to enable the orchestrator
to use SSSD for user lookups.

 l To enable SSSD set either:

-d true

--use-sssd true

 l To disable SSSD set either:

-d false

--use-sssd false

When enabled, the orchestrator will check both the local user store and the SSSD user store
(e.g. Active Directory) on requests to create logons and distribute key information, allowing keys
to be managed both for local users and for domain users. When enabled, user logon must be
created in Keyfactor Command with the username as it appears in SSSD (see SSH-SSSD Case
Sensitivity Flag and Adding Logons in the Keyfactor Command Reference Guide).

If you're using SSSD, you must be using SSSD on any remote servers the orchestrator will
manage. Additionally, the LogonHomeDirectories setting is expected to be consistent on all
remote servers.

Domain users can be managed with or without preexisting home directories.

-l, --logon-home-directories </homedirectoryroot>

Specifying this parameter allows you to set the base path for home directories of SSH users.
This is referenced both when new logons are created, as requested through Keyfactor
Command, and when doing discovery for existing logons and keys. If you don't specify a value,
the default of /home is used.

The value set for the Keyfactor Bash Orchestrator login-home-directories needs to match the
value set for the path in the override_homedir or fallback_homedir SSSD configuration. For
example, if fallback_homedir = /home/my/dir/path/%u@%d, login-home-directories needs to be
set to /home/my/dir/path. All SSSD logons to be discovered by or created with the Keyfactor
Bash Orchestrator must have a home directory in this directory, not a subdirectory of this
directory. For example, given the previously referenced directory, the path
/home/my/dir/path/myusername@keyexample.com would be valid but /home/my/dir/path/an-
otherdirlevel/myusername@keyexample.com would not be valid. Home directories are created
automatically when logons are created.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 126

Important: Any remotely controlled targets (see Install Remote Control Targets on the
next page) of a server using SSSD logons with the Keyfactor Bash Orchestrator must
also be configured for SSSD logons and must have the same configuration value for fall-
back_homedir or override_homedir.

The output from the command should look similar to the following, given the example command
shown.

sudo ./install.sh -u https://keyfactor.keyexample.com/KeyfactorAgents -n svc_
sshorch@keyexample.com -s -t /tmp/MyRoot.crt -i 74a9afcc-087d-423a-a331-06686427fdd9 -c
appsrvr80-SSH.ubuntu.keyexample.com -d false

 Service Account Password:
 Creating orchestrator installation directory...
 Creating file structure...
 Generating public/private rsa key pair.
 Your identification has been saved in id_rsa.
 Your public key has been saved in id_rsa.pub.
 The key fingerprint is:
 SHA256:APQcjxNSzPFF0Dg+cFlteJjHb2CoIAK7/ysAkUkKk7s keyfactor-bash@appsrvr80.keyexample.com
 The key's randomart image is:
 +---[RSA 2048]----+
 |=* .++=..B+B |
 |Bo. .==*=.* O |
 |oo . .*=oo = o |
 |o. o+ o |
 |o. S. . |
 |E. |
 | .. |
 | .. |
 | .o. |
 +----[SHA256]-----+
 Creating orchestrator log file...
 Creating Session Cache File...
 Adding uninstall script to installation directory...
 Installing Keyfactor Bash Orchestrator...
 Creating credential file...
 Creating job schedule table...
 Adding root certificate to local ca store...
 Updating certificates in /etc/ssl/certs...
 0 added, 0 removed; done.
 Running hooks in /etc/ca-certificates/update.d...

 done.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 127

 done.
 Creating Keyfactor SSH Daemon...
 Creating service unit file...
 Setting file ownership...
 Ensuring service account 'keyfactor-bash' has necessary permissions...
 Creating remote setup script...
 Starting Keyfactor Bash Orchestrator...

 4. Review the output from the installation to confirm that no errors have occurred.

The script creates a directory, /opt/keyfactor-bash-orchestrator, and places the orchestrator files
in this directory. Log files are found in /opt/keyfactor-bash-orchestrator/logs, though this is config-
urable (see Configure Logging for the Keyfactor Bash Orchestrator on page 130).

The orchestrator service, named keyfactor-bash-orchestrator.service, should be automatically
started at the conclusion of the install and configured to restart on reboot.

Tip: Once the installation of the orchestrator and any targets for it to control is complete, you
need to use the Keyfactor Command Management Portal to approve the orchestrator (if you
don't have auto-registration for Keyfactor Bash Orchestrators enabled) and configure SSH
server groups and servers as per Server Manager in the Keyfactor Command Reference
Guide. SSH server records are automatically created for the main bash orchestrator if you
enable auto-registration for bash orchestrators and use the -i switch when registering the
bash orchestrator. They are not automatically created for remote targets.

2.4.3 Install Remote Control Targets

After you complete the installation of at least one Keyfactor Bash Orchestrator, you can configure
other Linux servers in the environment as control targets for this orchestrator. This is done by
running a script on the target servers that installs the SSH public key matching the orchestrator's
private key on the target server, along with making a few configuration changes. This allows the
orchestrator service on the orchestrator (the local Linux user keyfactor-bash) to communicate with
the targets using secured SSH.

Important: Any remotely controlled targets of a server using SSSD logons with the Keyfactor
Bash Orchestrator must also be configured for SSSD logons and must have the same config-
uration value for fallback_homedir or override_homedir.

To configure orchestrator targets:

 1. On the orchestrator machine, locate the remoteinstall.sh script in the /opt/keyfactor-bash-
orchestrator directory. Do not use the remoteinstall-template.sh script found in the source
material under Installation. This script has not been modified to contain the specific public key of
your orchestrator.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 128

Tip: A copy of the configured remoteinstall.sh script may also be found in the directory
from which you executed the installation of the Keyfactor Bash Orchestrator.

 2. Copy the customized remoteinstall.sh script to the orchestrator target that you wish to
configure and place it in a temporary working directory.

 3. On the Linux machine you wish to control with the orchestrator, in a command shell change to
the temporary directory where you placed the remoteinstall.sh script.

 4. Use the chmod command to make the script file executable. The file ships in a non-executable
state to avoid accidental execution. For example:

sudo ./chmod +x remoteinstall.sh

 5. In the command shell, run the remoteinstall.sh script as root with no parameters. There is no
output from the command when it completes successfully.

sudo ./remoteinstall.sh

The script creates a directory, /opt/keyfactor-bach-orchestrator-client, and places the public key of
the orchestrator Linux service account user in an authorized_keys file within it. It also creates a
local service account user (see Create a Service Account for the Keyfactor Bash Orchestrator on
page 122) and grants this user ownership on this file to allow the orchestrator server service
account to perform tasks on the target.

Log messages are written to the standard Linux syslog. The location of these will vary depending on
the system OS.

Tip: Once the installation of the orchestrator and any targets for it to control is complete, you
need to use the Keyfactor Command Management Portal to approve the orchestrator (if you
don't have auto-registration for Keyfactor Bash Orchestrators enabled) and configure SSH
server groups and servers as per Server Manager in the Keyfactor Command Reference
Guide. SSH server records are not automatically created for remote targets, even if you
enable auto-registration for bash orchestrators and use the -i switch when registering the
bash orchestrator that will control your targets.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 129

2.4.4 Optional Configuration

Once the installation is complete, the Keyfactor Bash Orchestrator should be running and ready to
communicate with the Keyfactor Command server. The initial installation allows the orchestrator to
scan itself to do discovery of SSH keys and then management of SSH keys if the server is configured
for management in Keyfactor Command. At this point, you may wish to configure one or more orches-
trator target servers for the orchestrator to additionally control (see Install Remote Control Targets
on page 128).

Important: Orchestrator tasks will not run until you complete the orchestrator configuration
by making the appropriate configuration changes in the Keyfactor Command Management
Portal. See Orchestrators in the Keyfactor Command Reference Guide for instructions on
approving the orchestrator in the Keyfactor Command Management Portal on the Orches-
trators->Management pages and on configuring SSH server groups and servers on the SSH-
>Server Managers page (see SSH Server Managers in the Keyfactor Command Reference
Guide).

2.4.4.1 Configure Logging for the Keyfactor Bash Orchestrator

By default, the Keyfactor Bash Orchestrator places its log files in the /opt/keyfactor-bash-orches-
trator/logs directory, generates logs at non-debug level, rotates the logs when they reach 50 MB,
and retains 10 archive logs before deletion.

If you wish to change these defaults after the installation is complete:

 1. On the orchestrator machine where you wish to adjust logging, open a command shell and
change to the directory in which the orchestrator is installed. By default this is /opt/keyfactor-
bash-orchestrator.

 2. In the command shell in the directory in which the orchestrator is installed, change to the Config-
uration directory.

 3. Using a text editor, open the orchestrator_config file in the Configuration directory. Your orches-
trator_config file may have a slightly different layout than shown here, but it will contain the
three fields highlighted in the below figure. The fields you may wish to edit are:

 l logFile=/opt/keyfactor-bash-orchestrator/logs/bash-orchestrator-log.txt

The path and file name of the active orchestrator log file.

Important: If you choose to change the path for storage of the log files, you will
need to create the new directory (e.g. /opt/sshorchlogs) and grant the Linux
service account under which the orchestrator service is running (see Create a
Service Account for the Keyfactor Bash Orchestrator on page 122) full control
permissions on this directory.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 130

 l logFileSize=50000000
The maximum file size of each log file. After a log file reaches the maximum size, it is
rotated to an archive file name and a new log file is generated. The default is 50000000
(50 MB).

 l logFilesToKeep=10
The number of archive files to retain before deletion.

 l debugLogEnabled=false
The level of log detail that should be generated. The default of false logs error and some
informational data but at a minimal level to avoid generating large log files. For
troubleshooting, it may be desirable to set the debug level to true.

Figure 31: Configure Logging for the Keyfactor Bash Orchestrator

Tip: Log messages for remote control targets are written to the standard Linux syslog. The
location of these will vary depending on the system OS. Log messages for the orchestrator's
communication with the remote control targets are included in the primary orchestrator log
(described above). It can be helpful to look in both places when troubleshooting an issue with
a remote control target.

2.4.4.2 Start the Keyfactor Bash Orchestrator Service

The keyfactor-bash-orchestrator service runs on the Keyfactor Bash Orchestrator machine and
controls SSH public key discovery and management tasks for the orchestrator machine itself and
target servers it controls. The service should start automatically at the conclusion of the installation.

The service on Linux is added as keyfactor-bash-orchestrator, so when referencing it in startup
commands, it should be referenced by this name, including case. For example:

systemctl start [stop] [restart] [status] keyfactor-bash-orchestrator.service

Once you have finished the SSH server group and server configuration using the Keyfactor
Command Management Portal and have completed a scan of the configured servers, you can view
discovered keys and logons in the Keyfactor Command Management Portal and then begin using the
management features. See SSH in the Keyfactor Command Reference Guide for information on
using the SSH features.

2.5 Troubleshooting

The following error conditions and general troubleshooting tips may be helpful in resolving issues
with the Keyfactor orchestrators. Generally speaking, issues are often related to trusts of root and

11.4 Keyfactor Orchestrators Installation and Configuration Guide 131

intermediate certificates, firewall challenges, or insufficient permissions for the service account
running the orchestrator service.

Validate Management Portal Configuration

Things to check in the Management Portal include:

 l Is the last seen time for the orchestrator on the Orchestrator Management page in the Manage-
ment Portal within the last few minutes (see Orchestrator Management in the Keyfactor
Command Reference Guide)? Most orchestrators send a heartbeat to Keyfactor Command every
5 minutes, so this date should at most be 5 minutes out of date if the orchestrator is operating
correctly.

Tip: Orchestrator control targets for the Keyfactor Bash Orchestrator do not appear on
the Orchestrator Management page, so for a remote server that's not operating as
expected, this would be the orchestrator that is controlling the target.

Figure 32: Orchestrator Management for a Keyfactor Bash Orchestrator

 l Has the orchestrator been approved on the Orchestrator Management page in the Management
Portal (see Orchestrator Management in the Keyfactor Command Reference Guide)?

 l Is there a sync schedule set to run frequently for the orchestrator (SSH), remote control target
(SSH), or certificate store? Sync schedules for certificates stores are automatically disabled if
inventory jobs are failing.

 l For the Keyfactor Bash Orchestrator:
 o Has the server record for the orchestrator or remote control target been created under

SSH Server Manager on the Servers tab in the Management Portal (see SSH Servers in the
Keyfactor Command Reference Guide)?

11.4 Keyfactor Orchestrators Installation and Configuration Guide 132

Figure 33: Orchestrator Management for a Keyfactor Bash Orchestrator

 o Does the server record for the orchestrator or remote control target in the Management
Portal have the correct hostname or IP address? If the name or IP address is incorrect, sync
jobs will fail.

 o Is the server record for the remote control target in the Management Portal associated with
the correct orchestrator? If the control target is associated with the wrong orchestrator,
you may be looking at the wrong log files (see Debug Logging and Error Messages below) for
troubleshooting information.

Debug Logging and Error Messages

It is often helpful to enable debug logging on the orchestrator. For information on configuring this,
see the specific orchestrator chapters.

Once the logging is set at debug or trace level, it can be helpful to watch the logs live while activity
is going on. On Linux, you can do this with tail (or a similar tool) to watch the log in real time. For
example:

tail -f /opt/keyfactor-bash-orchestrator/logs/keyfactorbash-orchestrator-log.txt

tail -f /opt/keyfactor/orchestrator/logs/Log.txt

On Windows, there are also tools with tail-like functionality. Notepad++, for example, has this func-
tionality built in.

Some messages in the KeyfactorUniversal Orchestrator log include a correlation ID that helps to
identify log messages that originated from the same request. The correlation ID is a randomly gener-
ated GUID that often appears just after the date in the log entry (B0C4946E-DB3B-4404-8080-
79AFF260DE4E in the following example) and is the same for all log messages for the given request
until the request completes.

 2023-09-15 18:19:00.3780 B0C4946E-DB3B-4404-8080-79AFF260DE4E 230398 Keyfactor.Orches-
trators.JobExecutors.OrchestratorJobExecutor [Debug] - Running job extension for job with Id
'b0c4946e-db3b-4404-8080-79aff260de4e'

11.4 Keyfactor Orchestrators Installation and Configuration Guide 133

 2023-09-15 18:19:00.3780 B0C4946E-DB3B-4404-8080-79AFF260DE4E 230398 Keyfactor.Ex-
tensions.Orchestrator.WindowsCertStore.WinCert.Inventory [Trace] - Entered 'ProcessJob' method.
 2023-09-15 18:19:00.3780 B0C4946E-DB3B-4404-8080-79AFF260DE4E 230398 Keyfactor.Ex-
tensions.Orchestrator.WindowsCertStore.WinCert.Inventory [Trace] - {"JobCan-
celled":false,"ServerError":null,"JobHistoryID":230398,"RequestStatus":1,"ServerUserName":
 "keyexample\\svc_kyforch","ServerPassword":"**********","JobConfigurationProperties":
{"spnwithport":false,"WinRm Protocol":"https","WinRm Port":"5986","ServerUsername":"keyexample\\svc_
kyforch","ServerUseSsl":true,"sniflag":0},"UseSSL":true,"JobTypeID":"00000000-0000-0000-0000-
000000000000",
 "JobID":"b0c4946e-db3b-4404-8080-79aff260de4e","Cap-
ability":"CertStores.WinCert.Inventory","LastInventory":[],"CertificateStoreDetails":
{"ClientMachine":"web-
srvr93.keyexample.com","StorePath":"My","StorePassword":"**********","Type":117}}
 2023-09-15 18:19:00.3780 B0C4946E-DB3B-4404-8080-79AFF260DE4E 230398
Keyfactor.Extensions.Orchestrator.WindowsCertStore.WinCert.Inventory [Trace] - Establishing runspace
on client machine: websrvr93.keyexample.com
 2023-09-15 18:19:00.3780 B0C4946E-DB3B-4404-8080-79AFF260DE4E 230398 Keyfactor.Ex-
tensions.Orchestrator.WindowsCertStore.PsHelper [Trace] - Entered 'GetClientPsRunspace' method.
 2023-09-15 18:19:00.3780 B0C4946E-DB3B-4404-8080-79AFF260DE4E 230398 Keyfactor.Ex-
tensions.Orchestrator.WindowsCertStore.PsHelper [Trace] - Creating remote session at: https://web-
srvr93.keyexample.com:5986/wsman
 2023-09-15 18:19:00.3780 B0C4946E-DB3B-4404-8080-79AFF260DE4E 230398
Keyfactor.Extensions.Orchestrator.WindowsCertStore.PsHelper [Trace] - Credentials Specified
 [Messages removed for clarity]
 2023-09-15 18:19:00.7389 B0C4946E-DB3B-4404-8080-79AFF260DE4E 230398 Keyfactor.Ex-
tensions.Orchestrator.WindowsCertStore.WinCert.Inventory [Trace] - Connecting to remote server websr-
vr93.keyexample.com failed with the following error message :
 acquiring creds with username only failed No credentials were supplied, or the credentials were
unavailable or inaccessible SPNEGO cannot find mechanisms to negotiate For more information, see the
about_Remote_Troubleshooting Help topic.
 at System.Management.Automation.Runspaces.AsyncResult.EndInvoke()
 at System.Management.Automation.Runspaces.Internal.RunspacePoolInternal.EndOpen(IAsyncResult asyn-
cResult)
 at System.Management.Automation.Runspaces.Internal.RemoteRunspacePoolInternal.Open()
 at System.Management.Automation.Runspaces.RunspacePool.Open()
 at System.Management.Automation.RemoteRunspace.Open()
 at Keyfactor.Extensions.Orchestrator.WindowsCertStore.WinCert.Inventory.PerformInventory(Invent-
oryJobConfiguration config, SubmitInventoryUpdate submitInventory)

 2023-09-15 18:19:00.7389 B0C4946E-DB3B-4404-8080-79AFF260DE4E 230398 Keyfactor.Ex-
tensions.Orchestrator.WindowsCertStore.WinCert.Inventory [Warn] - Inventory job failed for Site 'My'
on server 'websrvr93.keyexample.com' with error:
 'Connecting to remote server websrvr93.keyexample.com failed with the following error message :

11.4 Keyfactor Orchestrators Installation and Configuration Guide 134

acquiring creds with username only failed No credentials were supplied, or the credentials were
unavailable or inaccessible SPNEGO cannot find mechanisms to negotiate
 For more information, see the about_Remote_Troubleshooting Help topic.
 at System.Management.Automation.Runspaces.AsyncResult.EndInvoke()
 at System.Management.Automation.Runspaces.Internal.RunspacePoolInternal.EndOpen(IAsyncResult asyn-
cResult)
 at System.Management.Automation.Runspaces.Internal.RemoteRunspacePoolInternal.Open()
 at System.Management.Automation.Runspaces.RunspacePool.Open()
 at System.Management.Automation.RemoteRunspace.Open()
 at Keyfactor.Extensions.Orchestrator.WindowsCertStore.WinCert.Inventory.PerformInventory(Invent-
oryJobConfiguration config, SubmitInventoryUpdate submitInventory)

 2023-09-15 18:19:00.7389 B0C4946E-DB3B-4404-8080-79AFF260DE4E 230398 Keyfactor.Orches-
trators.JobExecutors.OrchestratorJobExecutor [Debug] - Finished running job extension for job with
Id 'b0c4946e-db3b-4404-8080-79aff260de4e'

Some messages to look for include:

 l This message (or similar—text varies slight from orchestrator to orchestrator) indicates that the
orchestrator has not yet been approved in the Keyfactor Command Management Portal:

2021-07-29 09:01:28.5957 Keyfactor.Orchestrators.JobEngine.SessionJobExecutor
 [Info] - Agent has not yet been registered with CMS. Trying again in 30 minutes.

After approving the orchestrator in the Management Portal, you can restart the orchestrator
service to avoid waiting 30 minutes for the next automated retry.

 l Some log message spell out the problem pretty clearly. For example, this message from the Java
Agent log:

2021-07-29 09:00:02.437 [Scheduler_Worker-1] ERROR com.css_security.cms.JksUtilities -
 Keystore /opt/apps/myapp.jks loaded as type JKS but the provided password is incorrect

In this case, the certificate store configuration in the Management Portal is not using the correct
password for the store.

 l This series of messages in the Java Agent log indicates that the stored credentials file for the
Java Agent is no longer useable:

2021-07-01 11:24:59.292 [Scheduler_Worker-1] ERROR com.css_secur-
ity.cms.apache.http.HttpClientFactory -
 Given final block not properly padded. Such issues can arise if a bad key is used during

11.4 Keyfactor Orchestrators Installation and Configuration Guide 135

decryption.
 2021-07-01 11:24:59.313 [Scheduler_Worker-1] ERROR com.css_secur-
ity.cms.apache.http.HttpClientFactory -
 Could not decrypt credentials file at config/install.creds
 2021-07-01 11:24:59.313 [Scheduler_Worker-1] INFO com.css_secur-
ity.cms.apache.http.HttpClientFactory -
 Your machine key may have changed. Reencrypt credentials using local machine key.
 2021-07-01 11:24:59.313 [Scheduler_Worker-1] INFO com.css_secur-
ity.cms.apache.http.HttpClientFactory -
 Generate new credentials by running included cms-credential-encryptor utility
 2021-07-01 11:24:59.313 [Scheduler_Worker-1] INFO com.css_secur-
ity.cms.apache.http.HttpClientFactory -
 Try 1. Trying again in 30 seconds

The credentials file can be recreated to return the Java Agent to functionality (see Appendix A—
Generate New Credentials for the Java Agent).

 l This series of messages indicates that the Keyfactor Command server is unreachable:

2021-07-29 11:59:02.1003 Keyfactor.Orchestrators.JobEngine.SessionClient [Error] - Unable to
heartbeat:
 2021-07-29 11:59:02.1003 Keyfactor.Orchestrators.JobEngine.SessionClient [Trace] - Leaving CMSSes-
sionClient.Heartbeat
 2021-07-29 11:59:02.1006 Keyfactor.Orchestrators.JobEngine.SessionJobExecutor [Debug] - Heartbeat
success: Unreachable
 2021-07-29 11:59:02.1006 Keyfactor.Orchestrators.JobEngine.SessionJobExecutor [Warn] - Heartbeat
endpoint unreachable.
 Trying again later

This could indicate a network or firewall issue.
 l A series of messages similar to this for the Universal Orchestrator can indicate a problem

retrieving the CRL for the certificate used to secure the Keyfactor Command server if you've
chosen to connect to Keyfactor Command over SSL:

2022-09-14 11:15:06.1830 Keyfactor.Orchestrators.JobEngine.SessionJobExecutor [Error] -
 Error in SessionManager: Unable to register session.
 The SSL connection could not be established, see inner exception.
 The remote certificate is invalid because of errors in the certificate chain: Revoc-
ationStatusUnknown, OfflineRevocation

Confirm that the CRLs for the CA that issued the certificate and the remaining CAs in the chain
are valid. Confirm that they are available in a location that is accessible to the orchestrator

11.4 Keyfactor Orchestrators Installation and Configuration Guide 136

server (e.g. a location other than LDAP if the orchestrator is installed on a server not joined to a
domain in the forest where they were issued). If you're using delta CRLs and hosting them on an
IIS website using the default CRL suffix as a naming convention (+), be sure to enable double
escaping in IIS to allow the orchestrator to retrieve the CRL files containing a plus in the file
name.

 l Messages that look like errors during SSL scanning are common as attempts are made to
connect to TLS endpoints and connections fail or are refused. This is part of the process of
testing whether an SSL endpoint is responding and then whether there is a certificate there.
Most of these message exist at TRACE level, so monitoring at DEBUG rather than TRACE level
will eliminate these messages if they become overwhelming. For example:

2022-09-12 10:56:32.3948 EE033BD9-421A-44CA-89BC-10C86949B506 166937 Tls13Probe [Trace] -
 Endpoint 192.168.216.87:443 returned status 'ExceptionDownloading' with exception 'System.Ar-
gumentException':
 The specified nonce is not a valid size for this algorithm. (Parameter 'nonce')
 2022-09-12 10:56:39.0567 EE033BD9-421A-44CA-89BC-10C86949B506 166937 Tls13Probe [Trace] -
 Endpoint 192.168.216.158:443 returned status 'ConnectionRefused' with exception 'System.Net.Sock-
ets.SocketException':
 An existing connection was forcibly closed by the remote host.
 2022-09-12 10:57:23.4727 EE033BD9-421A-44CA-89BC-10C86949B506 166937 Tls13Probe [Trace] - Connec-
tion to 192.168.216.87:443 failed
 2022-09-12 10:57:24.3345 EE033BD9-421A-44CA-89BC-10C86949B506 166937 a [Trace] -
 Endpoint 192.168.216.211:443 returned status 'ExceptionDownloading' with exception
 'Keyfactor.Orchestrators.SSL.Pipeline.Exceptions.ConnectionGoneException': Read zero bytes on a
blocking read
 2022-09-12 10:57:57.9505 EE033BD9-421A-44CA-89BC-10C86949B506 166937 b [Trace] -
 Endpoint 192.168.216.96:443 returned status 'SslRefused' with exception 'Keyfactor.Orches-
trators.SSL.Pipeline.Exceptions.TlsAlertException':
 Got TLS alert during TLS handshake: Alert level 2, Alert description 70

Heartbeat

You should see a heartbeat message similar to the following in the log every 5 minutes:

 l Keyfactor Universal Orchestrator on Windows:

2023-09-12 11:01:16.4598 Keyfactor.Orchestrators.JobEngine.SessionJobExecutor [Debug] -
Existing session found. Heartbeating...

 l Keyfactor Bash Orchestrator:

Tue Aug 11 18:06:02 UTC 2023 [Debug]: Performing orchestrator heartbeat...

 l Keyfactor Java Agent on Linux:

11.4 Keyfactor Orchestrators Installation and Configuration Guide 137

2023-07-30 00:52:11.662 [Scheduler_Worker-1] DEBUG com.css_secur-
ity.cms.agents.jobs.SessionManager - Existing session found. Heartbeating...

This is the orchestrator checking in with the Keyfactor Command server to see if there are any jobs.
If this message is missing, it could indicate that the heartbeat service is not running.

If you're running the Keyfactor Bash Orchestrator, you can see the heartbeat service as a separate
entity. Execute this command on the orchestrator in the command shell as root:

systemctl status keyfactor-bash-orchestrator.service

Output from this command should look something like that shown in Figure 34: Status for the
Keyfactor Bash Orchestrator Service. If you don't see heartbeat.sh in the output, the heartbeat
service is not running.

Figure 34: Status for the Keyfactor Bash Orchestrator Service

For other orchestrators, check to see if the orchestrator service as a whole is running (see details in
the specific orchestrator chapters). Start the service if it is not running or restart it if it is running
and check again for a heartbeat after a few minutes.

Firewall Ports

At a very basic level, the orchestrator needs to be able to communicate with the Keyfactor
Command server(s) on either port 80 or port 443 (depending on the configuration option you've
chosen for this connection—see orchestrator specific chapters).

The ports needed for the Keyfactor Universal Orchestrator depend on the functions enabled for the
orchestrator. For example, IIS certificate store management uses remote PowerShell (default TCP
5985 and 5986). For SSL discovery and management, any ports configured for scanning need to be
open.

The Keyfactor Bash Orchestrator communicates with any remote control targets on port 22 or the
alternative port you have configured for SSH. If you are using a non-standard port for SSH, you
need to be sure to configure this on both the Keyfactor Command side (see Adding SSH Servers in

11.4 Keyfactor Orchestrators Installation and Configuration Guide 138

the Keyfactor Command Reference Guide) and in the SSH configuration on the orchestrator and
remote control targets (sshd_config).

For more information about the firewall ports needed in a Keyfactor Command environment, see Fire-
wall Considerations in the Keyfactor Command Server Installation Guide.

Keyfactor Bash Orchestrator Troubleshooting Tips

The Keyfactor Bash Orchestrator has two possible configurations—local and remote. The
troubleshooting steps differ depending on whether the server that's not operating as expected is
running the orchestrator software (a local installation) or is a control target for the orchestrator (a
remote installation). In either case, the best place to start with troubleshooting is in the Keyfactor
Command Management Portal to confirm things seem correct on this side of the communication and
then configure debug logging on the orchestrator and review those logs.

Successful Inventory and Policy Publishing

In this snippet you see a successful inventory showing keys found for the Linux users ginag and
svc_greenchicken and a logon found for the Linux user zadams with no key found. You see that the
server is configured in inventory and publish policy mode, since after performing the inventory the
server went through the steps of publishing logons and keys. Details about these are not written to
the log.

Tue Aug 11 18:07:45 UTC 2020 [Debug]: Sending request to 'https://key-
factor.keyexample.com/KeyfactorAgents/SshSync/1/Configure' with payload '{"SessionToken":
 "5451f7aa-4fd5-4bf5-a563-2e4f7bd3ed3f", "JobId": "b835bde8-8174-447a-b351-810e582148c0"}'
 Tue Aug 11 18:07:45 UTC 2020 [Debug]: Configure Response for job with id 'b835bde8-8174-447a-b351-
810e582148c0':
 {"Hostname":"appsrvr79.keyexample.com","InventoryCompleteEndpoint":"/SshSync/1/InventoryComplete",
"Port":22,"AuditId":7642,"JobCancelled":false,"Result":{"Status":1,"Error":null}}
 Tue Aug 11 18:07:46 UTC 2020 [Debug]: Using sshd_config file '/etc/ssh/sshd_config' on server
'appsrvr79.keyexample.com' for job with id 'b835bde8-8174-447a-b351-810e582148c0'
 Tue Aug 11 18:07:46 UTC 2020 [Info]: Beginning local inventory job on server 'appsr-
vr79.keyexample.com' for job with id 'b835bde8-8174-447a-b351-810e582148c0'
 Tue Aug 11 18:07:49 UTC 2020 [Debug]: Sending request to 'https://key-
factor.keyexample.com/KeyfactorAgents/SshSync/1/InventoryComplete' with payload '{"Status":2,"Res-
ults": [{
 "user": "ginag",
 "lastlogon": "",
 "keys": ["ssh-rsa AAAAB3NzaC1yc2EAAAA[truncated for display purposes]9M5vl6f Gina G. Gant"]
 },{
 "user": "zadams",
 "lastlogon": "",
 "keys": []
 },{
 "user": "svc_greenchicken",
 "lastlogon": "",

11.4 Keyfactor Orchestrators Installation and Configuration Guide 139

 "keys": ["ssh-rsa AAAAB3NzaC1yc2EAAAAD[truncated for display purposes]vicWhZOd John W. Smith"]
 }],"SessionToken": "5451f7aa-4fd5-4bf5-a563-2e4f7bd3ed3f","JobId": "b835bde8-8174-447a-b351-
810e582148c0"}'
 Tue Aug 11 18:07:49 UTC 2020 [Debug]: Inventory Complete Response for job with id 'b835bde8-8174-
447a-b351-810e582148c0' on server 'appsrvr79.keyexample.com':
 {"SshDesiredState":[{"Username":"ginag","Keys":["ssh-rsa AAAAB3NzaC1yc2EAAAA[truncated for display
purposes]9M5vl6f Gina G. Gant"]},{"Username":"zadams","Keys":[]},
 {"Username":"svc_greenchicken","Keys":["ssh-rsa AAAAB3NzaC1yc2EAAAAD[truncated for display
purposes]vicWhZOd John W. Smith"]}],"Result":{"Status":1,"Error":null}}
 Tue Aug 11 18:07:49 UTC 2020 [Info]: Enforcing publish policy on server 'appsrvr79.keyexample.com'
for job with id 'b835bde8-8174-447a-b351-810e582148c0'
 Tue Aug 11 18:07:52 UTC 2020 [Info]: Publishing logons on local server 'appsrvr79.keyexample.com'
for job with id 'b835bde8-8174-447a-b351-810e582148c0'
 Tue Aug 11 18:07:52 UTC 2020 [Info]: Published logons successfully on server 'appsr-
vr79.keyexample.com' for job 'b835bde8-8174-447a-b351-810e582148c0'
 Tue Aug 11 18:07:52 UTC 2020 [Info]: Publishing keys on local server 'appsrvr79.keyexample.com' for
job with id 'b835bde8-8174-447a-b351-810e582148c0'
 Tue Aug 11 18:07:54 UTC 2020 [Info]: Published keys successfully on server 'appsr-
vr79.keyexample.com' for job 'b835bde8-8174-447a-b351-810e582148c0'
 Tue Aug 11 18:07:54 UTC 2020 [Debug]: Sending request to 'https://key-
factor.keyexample.com/KeyfactorAgents/SshSync/1/Complete' with payload
 '{"SessionToken": "5451f7aa-4fd5-4bf5-a563-2e4f7bd3ed3f", "JobId": "b835bde8-8174-447a-b351-
810e582148c0", "Status": 2}'
 Tue Aug 11 18:07:54 UTC 2020 [Info]: Execution of 'b835bde8-8174-447a-b351-810e582148c0' on server
'appsrvr79.keyexample.com' complete.

Validate Service Account Logon

During installation of the orchestrator, a local Linux user account should be created automatically
as an identity under which the orchestrator service will operate. This allows the orchestrator to
run as a non-root user. On servers on which you install the orchestrator directly, the following
Linux user account is created:

keyfactor-bash

On servers configured as remote control targets, the following Linux user account is created:

keyfactor-bash-orchestrator-svc

You can validate that the user has been created and has the correct configuration be reviewing
the /etc/passwd file.

In a command shell, output the content of the /etc/passwd file to the screen:

11.4 Keyfactor Orchestrators Installation and Configuration Guide 140

cat /etc/passwd

In the output from this command, look for the entry for the keyfactor-bash or keyfactor-bash-
orchestrator-svc user. It will look similar to one of these:

keyfactor-bash:x:978:976::/home/keyfactor-bash:/bin/bash
keyfactor-bash-orchestrator-svc:x:112:65534::/opt/keyfactor-bash-orchestrator-
client:/bin/bash

On the remote control target server, you should find an entry in the sshd_config file that directs
the service account logon over to the install path for the client to find the authorized_keys file for
the service account user, like so:

Match User keyfactor-bash-orchestrator-svc
AuthorizedKeysFile /opt/keyfactor-bash-orchestrator-client/authorized_keys

On both the orchestrator and remote control target servers, you should find a file in the /etc/sudo-
er.d directory named for the service name of the orchestrator or remote control target user
(keyfactor-bash or keyfactor-bash-orchestrator-svc) and containing a list of commands the orches-
trator is allowed to execute as root. For example:

keyfactor-bash appsrvr79.keyexample.com = (root) NOPASSWD: /bin/ls
keyfactor-bash appsrvr79.keyexample.com = (root) NOPASSWD: /bin/cat
keyfactor-bash appsrvr79.keyexample.com = (root) NOPASSWD: /usr/bin/test
keyfactor-bash appsrvr79.keyexample.com = (root) NOPASSWD: /bin/rm
keyfactor-bash appsrvr79.keyexample.com = (root) NOPASSWD: /usr/bin/tee
keyfactor-bash appsrvr79.keyexample.com = (root) NOPASSWD: /bin/touch
keyfactor-bash appsrvr79.keyexample.com = (root) NOPASSWD: /bin/chmod
keyfactor-bash appsrvr79.keyexample.com = (root) NOPASSWD: /bin/chown
keyfactor-bash appsrvr79.keyexample.com = (root) NOPASSWD: /usr/bin/gpasswd
keyfactor-bash appsrvr79.keyexample.com = (root) NOPASSWD: /usr/sbin/usermod
keyfactor-bash appsrvr79.keyexample.com = (root) NOPASSWD: /bin/sed
keyfactor-bash appsrvr79.keyexample.com = (root) NOPASSWD: /usr/bin/flock
keyfactor-bash appsrvr79.keyexample.com = (root) NOPASSWD: /bin/mkdir
keyfactor-bash appsrvr79.keyexample.com = (root) NOPASSWD: /usr/sbin/adduser

Validate Remote Control Target Public Key

The orchestrator connects to the remote control targets it is managing using SSH with a public key
pair. On the orchestrator, the key pair is stored in the .ssh directory under the directory where the
orchestrator is installed. By default, this is:

/opt/keyfactor-bash-orchestrator/.ssh

Both the private key (id_rsa) and public key (id_rsa.pub) are found here.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 141

In a command shell, output the content of the public key file to the screen:

cat id_rsa.pub

On the remote control target, the public key of the key pair is stored in the authorized_keys file for
the remote control target service account, which is found in the remote control install path. By
default, this is:

/opt/keyfactor-bach-orchestrator-client

In a command shell, output the content of the authorized_keys file to the screen:

cat authorized_keys

Compare the public key string from the remote control target authorized_keys file to the public
key string from the orchestrator id_rsa.pub file. They should match exactly. If they do not match,
the remote control target is not using the correct public key, which will cause connection attempts
made to it from the orchestrator to fail.

Tip: You should also see in the .ssh directory on the orchestrator a file named by hostname
(e.g. appsrvr80.keyexample.com) for each of the remote control targets managed by the
orchestrator. These contain a list of known, trusted host key stores. If this file has not be
created for your remote control target, connectivity to the target is failing at a very funda-
mental level (before the stage of a public key mismatch). See Firewall Ports on page 138.

Keyfactor Bash Orchestrator Log Messages

If the orchestrator is managing more than one server (remote control targets), it can be difficult to
interpret the logs, because the orchestrator operates in a multi-threaded manner and log
messages for jobs with different servers will be mixed together. Find a message related to the job
you're interested in and look for the ID for that job. Then look for all other messages referencing
that ID.

Look for error messages in the log. These should appear with the word Error in brackets just after
the date like so:

Tue Aug 11 19:14:33 UTC 2020 [Error]: Error occurred during job with id 'b835bde8-8174-447a-b351-
810e582148c0'
 on server 'appsrvr79.keyexample.com': An error occurred attempting to configure the job 'b835bde8-
8174-447a-b351-810e582148c0'

This particular message doesn't tell you very much except that this job was unable to complete for
some reason. If you look at the debug messages that appear immediately before and after the
error message, they may provide more information.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 142

This message indicates that the orchestrator was unable to make an SSH connection to the
remote control target named in the message:

Mon Aug 10 23:36:10 UTC 2020 [Error]: Error occurred during job with id '3f04f552-05fd-4c90-b3b1-
edeec70878bb' on server
 'appsrvr80.ubuntu.keyexample.com': Unable to connect to 'appsrvr80.ubuntu.keyexample.com' on port
'22' via SSH

This could happen for a number of reasons. Perhaps the hostname configured for the remote
target is incorrect. Perhaps the public key on the remote target is incorrect. It can be helpful in
this case to check the Linux syslog on the orchestrator for more context on the message. For
example, this set of messages from the Linux syslog reveals that the public key on the target is
invalid in some fashion:

Aug 11 13:03:04 appsrvr158 keyfactor-bash[29417]: Testing 'keyfactor-bash-orchestrator-svc' on
server
 'appsrvr80.keyexample.com' via SSH for job with id 'eeabd541-b9d2-46d2-a215-9cb99fed4adc'...
 Aug 11 13:03:04 appsrvr158 keyfactor-bash-orchestrator.sh[932]: keyfactor-bash-orchestrator-
svc@appsrvr80.keyexample.com:
 Permission denied (publickey).
 Aug 11 13:03:30 appsrvr158 keyfactor-bash[29486]: Error occurred during job with id 'eeabd541-b9d2-
46d2-a215-9cb99fed4adc' on server
 'appsrvr80.keyexample.com': Unable to connect to 'appsrvr80.keyexample.com' on port '22' via SSH

For information on troubleshooting public key issues with remote control targets, see Validate
Remote Control Target Public Key on page 141. For more information on troubleshooting remote
control target issues in general, see Remote Control Target Logs below. For information on what
successful inventory and publish policy log messages look like, see Successful Inventory and
Policy Publishing on page 139.

Remote Control Target Logs

Unlike on the orchestrator itself, where you can enable debug logging to see a more detailed
picture of what's going on when the orchestrator attempt to connect or run a job, on a remote
control target, the only logs available are the SSH logs showing attempts by the orchestrator to
make a remote connection into the target and then the commands the orchestrator runs from an
SSH perspective. These logs are found in the Linux system log where SSH logs are consolidated.
The name and location of this will vary by operating system, but it is often found in /var/log by
default (auth.log or secure is common). A large number of entries are generated in the log on a
successful connection for inventory or inventory and policy publishing, so it can be difficult to inter-
pret the logs.

In these logs you can check to see if the orchestrator is successfully making an SSH connection. If
it isn't, you may see some messages that will help determine why it isn't. If it's successfully making
the initial connection but then failing further along in the process, this log may also help reveal

11.4 Keyfactor Orchestrators Installation and Configuration Guide 143

that. Perhaps one of the commands that the service account needs to run isn't in the expected
path, for example.

When the orchestrator first connects to the remote control target, the log entries on the target
will look something like:

Aug 11 17:36:51 appsrvr80 sshd[95543]: Accepted publickey for keyfactor-bash-orchestrator-svc from
10.4.3.158 port 47778
 ssh2: RSA SHA256:u5zNB4UEoPNcax5p4fBbkkWaoiWq6AcEkA65XdzUkM4
 Aug 11 17:36:51 appsrvr80 sshd[95543]: pam_unix(sshd:session): session opened for user keyfactor-
bash-orchestrator-svc by (uid=0)
 Aug 11 17:36:51 appsrvr80 systemd-logind[656]: New session 13019 of user keyfactor-bash-orches-
trator-svc.
 Aug 11 17:36:51 appsrvr80 systemd: pam_unix(systemd-user:session): session opened for user
keyfactor-bash-orchestrator-svc by (uid=0)
 Aug 11 17:36:51 appsrvr80 sudo: keyfactor-bash-orchestrator-svc : TTY=unknown ; PWD=/opt/keyfactor-
bash-orchestrator-client ;
 USER=root ; COMMAND=/bin/cat /etc/ssh/sshd_config

An inventory of an authorized_keys file for a user will appear as a series of entries, something like:

Aug 11 18:11:28 appsrvr164 sudo: keyfactor-bash-orchestrator-svc : TTY=unknown ;
 PWD=/opt/keyfactor-bash-orchestrator-client ; USER=root ; COMMAND=/bin/test -f /home/j-
smith/.ssh/authorized_keys
 Aug 11 18:11:28 appsrvr164 sudo: keyfactor-bash-orchestrator-svc : TTY=unknown ;
 PWD=/opt/keyfactor-bash-orchestrator-client ; USER=root ; COMMAND=/bin/ls -l /home/j-
smith/.ssh/authorized_keys
 Aug 11 18:11:28 appsrvr164 sudo: keyfactor-bash-orchestrator-svc : TTY=unknown ;
 PWD=/opt/keyfactor-bash-orchestrator-client ; USER=root ; COMMAND=/bin/cat /home/j-
smith/.ssh/authorized_keys

Removal of a rogue key on a remote control target under management (in inventory and publish
policy mode) will appear as a series of entries where the authorized_keys file is removed, recre-
ated and repopulated with any valid keys (none in this case), like:

Aug 12 09:01:24 appsrvr80 sudo: keyfactor-bash-orchestrator-svc : TTY=unknown ;
 PWD=/opt/keyfactor-bash-orchestrator-client ; USER=root ; COMMAND=/usr/bin/test -f /home/j-
smith/.ssh/authorized_keys
 Aug 12 09:01:24 appsrvr80 sudo: keyfactor-bash-orchestrator-svc : TTY=unknown ;
 PWD=/opt/keyfactor-bash-orchestrator-client ; USER=root ; COMMAND=/bin/rm /home/j-
smith/.ssh/authorized_keys

11.4 Keyfactor Orchestrators Installation and Configuration Guide 144

 Aug 12 09:01:25 appsrvr80 sudo: keyfactor-bash-orchestrator-svc : TTY=unknown ;
 PWD=/opt/keyfactor-bash-orchestrator-client ; USER=root ; COMMAND=/usr/bin/test -f /home/j-
smith/.ssh/authorized_keys
 Aug 12 09:01:25 appsrvr80 sudo: keyfactor-bash-orchestrator-svc : TTY=unknown ;
 PWD=/opt/keyfactor-bash-orchestrator-client ; USER=root ; COMMAND=/usr/bin/test -d /home/j-
smith/.ssh
 Aug 12 09:01:25 appsrvr80 sudo: keyfactor-bash-orchestrator-svc : TTY=unknown ;
 PWD=/opt/keyfactor-bash-orchestrator-client ; USER=root ; COMMAND=/usr/bin/touch /home/j-
smith/.ssh/authorized_keys
 Aug 12 09:01:25 appsrvr80 sudo: keyfactor-bash-orchestrator-svc : TTY=unknown ;
 PWD=/opt/keyfactor-bash-orchestrator-client ; USER=root ; COMMAND=/bin/chmod 640 /home/j-
smith/.ssh/authorized_keys
 Aug 12 09:01:25 appsrvr80 sudo: keyfactor-bash-orchestrator-svc : TTY=unknown ;
 PWD=/opt/keyfactor-bash-orchestrator-client ; USER=root ; COMMAND=/bin/chown jsmith: /home/j-
smith/.ssh/authorized_keys
 Aug 12 09:01:25 appsrvr80 sudo: keyfactor-bash-orchestrator-svc : TTY=unknown ;
 PWD=/opt/keyfactor-bash-orchestrator-client ; USER=root ; COMMAND=/usr/bin/flock /home/j-
smith/.ssh/authorized_keys echo
 Aug 12 09:01:25 appsrvr80 sudo: keyfactor-bash-orchestrator-svc : TTY=unknown ;
 PWD=/opt/keyfactor-bash-orchestrator-client ; USER=root ; COMMAND=/usr/bin/tee -a /home/j-
smith/.ssh/authorized_keys

General Errors

Below are some possible errors you might encountered and some suggested troubleshooting tips or
solutions.

Unable to connect to the remote server

Here is an example of some very similar errors you might see when trying to connect to a target
machine to inventory a certificate store or execute a management or discovery job on a certificate
store:

Error: Unable to connect to the remote server - No connection could be made because
the target machine actively refused it 192.196.12.12:443 (80131500)

Error: Unable to complete the inventory operation. One or more errors occurred.
An error occurred while sending the request.
Unable to connect to the remote server
A connection attempt failed because the connected party did not properly respond after
a period of time, or established connection failed because connected host has failed
to respond 192.168.12.12:443 (80131500)

Error: Unable to connect to the remote server (80131509)

11.4 Keyfactor Orchestrators Installation and Configuration Guide 145

Error occurred during job with id 'b5e93ae6-df3b-4b36-9640-b41146db6d36' on server
'appsrvr13.keyexample.com': Unable to connect to 'appsrvr13.keyexample.com' on port
'22' via SSH

Messages of this type are generally the result of the target server being inaccessible. This might
happen if the server was turned off or in maintenance mode. Perhaps there is a network problem
routing to that server. If the certificate store has never worked in Keyfactor Command, perhaps
there is a typo in the server name configuration.

Request Entity Too Large

You may encounter this error when doing an inventory of an IIS certificate store:

Error: Response status code does not indicate success: 413 (Request Entity Too Large).
(80131500)

This is an indication that the certificate store you are inventorying contains more certificates (or
more precisely, the certificates add up to a total number of bytes greater) than IIS on the
Keyfactor Command server is configured to accept. To resolve this, adjust the values on the
IIS server that control the upload limits. For example, the maxAllowedContentLength. See SSL
Network Operations: Monitoring Network Scan Jobs with View Scan Details in the Keyfactor
Command Reference Guide) on fine tuning SSL monitoring for more information.

IIS Error 403.16

You may receive a 403.16 error while trying to authenticate an orchestrator to Keyfactor
Command using certificate authentication. On the face of it, this error indicates that the chain for
the certificate you're using to authenticate is not trusted by the Keyfactor Command server. First,
check to be sure that your certificate is trusted by the Keyfactor Command server. But if your
certificate is fully trusted and you're still getting this error, what then?

This error can indicate that the trusted root store on the Keyfactor Command server contains a
certificate that is not a root certificate (for example, an intermediate certificate is accidentally in
the root store). To check this, open the Local Computer certificates MMC on the Keyfactor
Command server, drill down to Certificates under the Trusted Root Certificate Authorities and
scan for any certificates where the Issued To does not match the Issued By. Remove any certi-
ficates you find like this.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 146

Figure 35: Certificate Incorrectly in the Trusted Root Certificate Store

Error: An attempt was made to load a program with an incorrect format.

If you receive an error similar to the following:

Could not load file or assembly 'Keyfactor.CAClient.Microsoft.DCOM, Version=2.1.1.0,
Culture=neutral, PublicKeyToken=0ed89d330114ab09'. An attempt was made to load a
program with an incorrect format.

This may indicate that the Keyfactor Universal Orchestrator was installed without the Microsoft
Visual C++ Redistributable x64 required to manage certificates from remote Microsoft CAs (see
System Requirements on page 7).

Error: The remote certificate is invalid because of errors in the certificate chain

If you receive an error similar to the following (some portions of message removed for clarity):

2023-02-15 11:54:27.6600 Keyfactor.Orchestrators.JobEngine.SessionJobExecutor [Error] - Error in
SessionManager: Unable to register session.

 The SSL connection could not be established, see inner exception.

 The remote certificate is invalid because of errors in the certificate chain: Revoc-
ationStatusUnknown, OfflineRevocation

This may indicate that the Keyfactor Universal Orchestrator cannot access the CRL(s) for the
SSL certificate used to secure the Keyfactor Command server (see System Requirements on
page 7).

To check this:

 1. Enable at least debug level logging (see Configure Logging for the Universal Orchestrator on
page 78).

11.4 Keyfactor Orchestrators Installation and Configuration Guide 147

 2. Either wait for the orchestrator to attempt to register again, or restart the orchestrator
service (see Start the Universal Orchestrator Service on page 81) to force an immediate
attempt to register.

 3. Look in the logs for a log message similar to the following (referencing your Keyfactor
Command server name):

2023-02-15 12:08:14.6076 Keyfactor.Orchestrators.Core.Http.KeyfactorHttpClient
[Debug] - Sending request to
'https://keyfactor.keyexample.com/KeyfactorAgents/Session/Register'

 4. Visit the referenced URL (https://key-
factor.keyexample.com/KeyfactorAgents/Session/Register) in a browser on the orchestrator
server. This should give you a response of:

The requested resource does not support http method 'GET'.

 5. In the browser, view details for the certificate (the exact method for this will vary depending on
the browser) and check the CRL Distribution Points field in the certificate.

Figure 36: Find the Certificate for the Keyfactor Command Web Site

 6. In the same browser on the orchestrator server, attempt to browse to the URL for the CRL
(assuming it's a URL).

 7. If the CRL downloads without error, then likely CRL access is not the issue. Open the CRL and
check the Next update date to see if it's in the past (indicating the CRL is out of date).

11.4 Keyfactor Orchestrators Installation and Configuration Guide 148

Note: CRL checks are done on port 80 since the CRL lookup is part of the validation of the
server's SSL certificate. This means the CRLs need to be available at an http URL. The
CRL file that is retrieved is signed by the CA, so although the network communication is not
encrypted when retrieving it, the data that is being validated can't be tampered with
(because it is signed).

Tip: The Keyfactor Universal Orchestrator can be installed without checking the CRL of
the Keyfactor Command if desired. Use the -NoRevocationCheck option for the Windows
orchestrator (see -NoRevocationCheck on page 34), the --no-revocation-check option for
the Linux orchestrator (see --no-revocation-check on page 47), or the AppSettings__
CheckServerCertificateRevocation option for the orchestrator in Linux containers (see
Table 1: Linux Container Parameters).

Remote Management Helpful Tools

The following tips are useful for servers being remotely managed using PowerShell remoting and
WinRM.

 l Test the connection from the orchestrator server to the remotely managed Windows server:

Test-netConnection -ComputerName <target> -Port 5986 or Test-netConnection -
ComputerName <target> -Port 5985

 l Test PS Session from the orchestrator server to the remotely managed server:

Enter-PSSEssion -ComputerName <target>

 l On the remotely managed server, check what's available:

winrm enumerate winrm/config/listener

 l Enable secure winrm:

winrm quickconfig -transport:https

 l Check the secure winrm port certificate:

gci -path cert:\localmachine\my |ft -property thumbprint,subject,NotBefore,NotAfter

2.6 Appendices

 l Appendix - Generate New Credentials for the Java Agent on the next page
 l Appendix - Set up the Universal Orchestrator to Use Client Certificate Authentication via a

Reverse Proxy: Citrix ADC on page 151

11.4 Keyfactor Orchestrators Installation and Configuration Guide 149

 l Appendix - Set up the Universal Orchestrator to Use Client Certificate Authentication with Certi-
ficates Stored in Active Directory on page 164

 l Appendix - Set up the Universal Orchestrator to Use a Forwarding Proxy on page 179

2.6.1 Appendix - Generate New Credentials for the Java Agent

Under some circumstances, you may find it necessary to generate new credentials for the Java
Agent. This can happen, for example, if you make a change to the hostname of the machine on which
the Java Agent is running. The credentials file stores the username and password for the service
account user that allows the Java Agent to communicate with Keyfactor Command—the identity for
the agent (see Create Service Accounts for the Java Agent on page 97)—encrypted with the host-
name to prevent the file from being used on machines other than the machine on which the agent has
been installed.

Log messages that indicate a new credentials file is needed look similar to the following:

2020-10-02 15:21:43.307 [Scheduler_Worker-1] ERROR com.css_security.cms.apache.http.HttpClientFactory
- Given final block not properly padded. Such issues can arise if a bad key is used during decryp-
tion.
 2020-10-02 15:21:43.307 [Scheduler_Worker-1] ERROR com.css_security.cms.apache.http.HttpClientFactory
- Could not decrypt credentials file at config\install.creds
 2020-10-02 15:21:43.526 [Scheduler_Worker-1] INFO com.css_security.cms.apache.http.HttpClientFactory
- Your machine key may have changed. Reencrypt credentials using local machine key.
 2020-10-02 15:21:43.541 [Scheduler_Worker-1] INFO com.css_security.cms.apache.http.HttpClientFactory
- Generate new credentials by running included cms-credential-encryptor utility

To generate a new credentials file on Windows:

 1. Open a command prompt using the “Run as administrator” option.

 2. Change directories to the directory in which the Java Agent is installed. By default, this is:
C:\Program Files\Keyfactor\Keyfactor Java Agent

 3. Type the following command to generate a new credentials file in the current directory:
java -jar CSS.CMS.CredentialEncryptor.jar encode-basic install.creds

 4. Locate the existing credentials file in the config directory under the installed directory. By
default, this is:

C:\Program Files\Keyfactor\Keyfactor Java Agent\config

 5. Delete or name off the existing install.creds file in the config directory and copy the new
install.creds file from the base install directory to the config directory.

 6. Restart the Java Agent service (see Start the Keyfactor Java Agent Service on page 117).

11.4 Keyfactor Orchestrators Installation and Configuration Guide 150

 7. Review the log messages to confirm that credential errors are no longer occurring (see
Configure Logging for the Java Agent on page 114).

To generate a new credentials file on Linux:

 1. Open a command shell.

 2. Change directories to the directory in which the Java Agent is installed. By default, this is:
/opt/keyfactor-java-agent

 3. As a user with rights to write to the current directory (or use sudo), type the following command
to generate a new credentials file in the current directory:

java -jar CSS.CMS.CredentialEncryptor.jar encode-basic install.creds

 4. Locate the existing credentials file in the config directory under the installed directory. By
default, this is:

/opt/keyfactor-java-agent/config

 5. Delete or name off the existing install.creds file in the config directory and copy the new
install.creds file from the base install directory to the config directory.

 6. Restart the Java Agent service (see Start the Keyfactor Java Agent Service on page 117).

 7. Review the log messages to confirm that credential errors are no longer occurring (see
Configure Logging for the Java Agent on page 114).

2.6.2 Appendix - Set up the Universal Orchestrator to Use Client Certificate
Authentication via a Reverse Proxy: Citrix ADC

The Keyfactor Universal Orchestrator can be configured to support TLS termination at a reverse
proxy or network edge device such as a Citrix ADC (a.k.a. NetScaler) or F5. The orchestrator
supports using either basic authentication or client certificate authentication between the orches-
trator and the Keyfactor Command orchestrator endpoint. When a client certificate is used for the
segment between the orchestrator and the reverse proxy, the reverse proxy authenticates the
orchestrator with the provided client certificate and then sends the certificate on to Keyfactor
Command as an added request header to authenticate the orchestrator to Keyfactor Command with
the original certificate. The orchestrator is authenticated and authorized to make the connection to
Keyfactor Command in one of two ways:

 l A username and password with appropriate permissions within Keyfactor Command are stored
on the reverse proxy and presented to Keyfactor Command as part of the request. Basic authen-
tication is used to authenticate the reverse proxy to IIS on the Keyfactor Command server. The
same credentials provide authorization for the orchestrator in Keyfactor Command. The original
certificate from the orchestrator, provided in a request header, authenticates the orchestrator
to the Keyfactor Command orchestrator endpoint.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 151

 l A username and password with appropriate permissions within Keyfactor Command are stored in
IIS on the Keyfactor Command. In this scenario, a second client certificate residing on the
reverse proxy is used to authenticate the reverse proxy to IIS on the Keyfactor Command
server. The basic authentication credentials provide authorization for the orchestrator in
Keyfactor Command and the original client certificate from the request header provides authen-
tication. The basic authentication credentials are stored locally and do not need to travel over
the network. The original certificate from the orchestrator, provided in a request header, authen-
ticates the orchestrator to the Keyfactor Command orchestrator endpoint.

The following instructions cover one method of configuring a Citrix ADC device to support these.

Tip: The following provides instructions for using the Citrix ADC GUI interface to create the
appropriate configuration. The same configuration could be accomplished using the command
line interface.

Complete the following steps and then configure the orchestrator to enable client certificate authen-
tication as per the installation instructions (see --client-auth-certificate (Client Certificate
Authentication) on page 44 or Install the Universal Orchestrator on Windows on page 25).

Define Rewrite Actions in Citrix

Create the following two rewrite actions.

Tip: If you're using a second client certificate to authenticate the proxy to Keyfactor
Command, you only need to create the first of these actions.

Capture the client certificate from the orchestrator:

 1. In the Citrix ADC GUI, browse to AppExpert > Rewrite > Actions.

 2. On the Rewrite Actions page, click Add.

 3. On the Create Rewrite Action page, enter a Name for the action that will take the certificate
received from the orchestrator and convert it to PEM format (e.g. CaptureClientCert).

 4. Give the action a Type of INSERT_HTTP_HEADER.

 5. Give the action a Header Name (e.g. NS-ClientCert). Be sure to make a note of this header
name. You will need it later when you configure certificate authentication for the orchestrator.

 6. Enter an Expression to convert the client authentication certificate to PEM format:
CLIENT.SSL.CLIENT_CERT.TO_PEM

 7. Enter Comments if desired and click OK to save the action.

Store basic authentication credentials to authenticate the proxy to IIS on the Keyfactor Command
server and provide authorization information:

11.4 Keyfactor Orchestrators Installation and Configuration Guide 152

 1. Click Add to add another action.

 2. On the Create Rewrite Action page, enter a Name for the action that will send the basic authen-
tication credentials for the orchestrator to Keyfactor Command (e.g. SendServiceCreds).

 3. Give the action a Type of INSERT_HTTP_HEADER.

 4. Give the action a Header Name of Authorization.

 5. Enter an Expression to send Base64-encoded basic authentication credentials to the Keyfactor
Command server (where service@keyexample.com and MySecurePassword are the correct
service name and password for your environment):

"Basic "+("service@keyexample.com"+":"+"MySecurePassword").B64ENCODEM

 6. Enter Comments if desired and click OK to save the action.

Define Rewrite Policies in Citrix

Create the following two rewrite policies.

Tip: If you're using a second client certificate to authenticate the proxy to Keyfactor
Command, you only need to create the first of these policies.

Put the client certificate from the orchestrator in the header:

 1. In the Citrix ADC GUI, browse to AppExpert > Rewrite > Policies.

 2. On the Rewrite Policies page, click Add.

 3. On the Create Rewrite Policy page, enter a Name for the policy that will confirm that a certi-
ficate has been received from the orchestrator and run the action to convert it to PEM format
(e.g. NS-GetCert).

 4. Give the policy the Action you created in the previous section to capture the client authen-
tication certificate (e.g. CaptureClientCert).

 5. Define a Log Action if desired.

 6. Set the Undefined-Result Action to -Global-undefined-result-action-.

 7. Enter an Expression to validate that the client authentication certificate has been received from
the orchestrator:

CLIENT.SSL.CLIENT_CERT.EXISTS

 8. Enter Comments if desired and click OK to save the policy.

Send the basic authentication credentials to the Keyfactor Command server:

11.4 Keyfactor Orchestrators Installation and Configuration Guide 153

 1. Click Add to add another policy.

 2. On the Create Rewrite Policy page, enter a Name for the policy that will send the basic authen-
tication credentials for the orchestrator to the Keyfactor Command server (e.g. NS-
SendCreds).

 3. Give the policy the Action you created in the previous section to send the basic authentication
credentials (e.g. SendServiceCreds).

 4. Define a Log Action if desired.

 5. Set the Undefined-Result Action to -Global-undefined-result-action-.

 6. Enter an Expression to confirm that the authorization header does not already exist in the
request header:

HTTP.REQ.HEADER("Authorization").EXISTS.NOT

 7. Enter Comments if desired and click OK to save the policy.

Define a Responder Policy in Citrix

Create the following responder policy.

Validate that the client certificate presented by the orchestrator was issued by the specified issuing
CA:

 1. In the Citrix ADC GUI, browse to AppExpert > Responder > Policies.

 2. On the Responder Policies page, click Add.

 3. On the Create Responder Policy page, enter a Name for the policy that will validate that the
certificate received from the orchestrator was issued by the correct CA (e.g. NS-Valid-
ateIssuer).

 4. Select an Action of Reset.

 5. Define a Log Action if desired.

 6. Do not configure an AppFlow Action.

 7. Set the Undefined-Result Action to -Global-undefined-result-action-.

 8. Enter an Expression to confirm that the certificate received from the orchestrator was issued
from the correct issuing CA (where CorpIssuingCA is the logical name of your CA):

CLIENT.SSL.CLIENT_CERT.ISSUER.CONTAINS("CorpIssuingCA").NOT

Tip: Connections from the orchestrator will fail if the client authentication certificate was
issued by any CA other than the one configured here. You can use AND logic to add more
than one CA. For example:

11.4 Keyfactor Orchestrators Installation and Configuration Guide 154

CLIENT.SSL.CLIENT_CERT.ISSUER.CONTAINS("CorpIssuingCA1").NOT &&
CLIENT.SSL.CLIENT_CERT.ISSUER.CONTAINS("CorpIssuingCA2").NOT

With this expression, certificates issued from either one of these CAs would be
accepted.

 9. Enter Comments if desired and click OK to save the policy.

Update the Virtual Server in Citrix

Important: Once you modify the virtual server to require certificates for authentication, many
other Keyfactor Command transactions will no longer function if they are sharing the same
virtual server. Be sure that you are using a separate virtual server for incoming requests to
/KeyfactorAgents on the Keyfactor Command server versus other types of requests. The
following instructions refer to setting all policies on a single load balancing virtual server, but
your configuration may include multiple virtual servers of other types, which may require
slight modifications to these instructions.

Modify the configuration for your load balancing virtual server that is used for Keyfactor Command
KeyfactorAgent requests as follows.

Configure the Citrix device to authenticate the orchestrator using its client certificate:

 1. In the Citrix ADC GUI, browse to Traffic Management > Load Balancing > Virtual Servers.

 2. On the Virtual Servers page, select your virtual server and click Edit.

 3. In the SSL Parameters section, click to edit, check the Client Authentication box, and set the
Client Certificate dropdown to Mandatory.

Associate the two rewrite policies.

Tip: If you're using a second client certificate to authenticate the proxy to Keyfactor
Command, you only need to associate the first of these policies.

Configure the policy to include the certificate in the header:

 1. On the Virtual Servers page, under Advanced Settings expand Policies.

 2. In the Policies section, click the plus to add a new policy.

 3. On the Choose Type page, select Choose PolicyRewrite and Choose TypeRequest and click
Continue.

 4. On the Choose Type page, click Add Binding.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 155

 5. On the Policy Binding page, click the Select Policy field and on the Rewrite Policies page
select the radio button for the rewrite policy you created to capture the client authentication
certificate (e.g. NS-GetCert). Click Select to save the selection.

 6. On the Policy Binding page, set a Priority of 110.

 7. Set Goto Expression to Next.

 8. Set Invoke LabelType to None.

 9. Click Bind to save the binding.

Configure the policy to send the basic authentication credentials to the Keyfactor Command server:

 1. On the Choose Type page for Rewrite Request, click Add Binding.

 2. On the Policy Binding page, click the Select Policy field and on the Rewrite Policies page
select the radio button for the rewrite policy you created to send the service account creden-
tials to the Keyfactor Command server (e.g. NS-SendCreds). Click Select to save the selec-
tion.

 3. On the Policy Binding page, set a Priority of 120.

 4. Set Goto Expression to Next.

 5. Set Invoke LabelType to None.

 6. Click Bind to save the binding.

 7. Click Close to return to the virtual server settings page.

Associate the responder policy:

 1. On the Virtual Servers page, in the Policies section, click the plus to add a new policy.

 2. On the Choose Type page, select Choose Policy Responder and Choose Type Request and
click Continue.

 3. On the Choose Type page, click Add Binding.

 4. On the Policy Binding page, click the Select Policy field and on the Responder Policies page
select the radio button for the responder policy you created to validate the issuer of the client
authentication certificate (e.g. NS-ValidateIssuer). Click Select to save the selection.

 5. On the Policy Binding page, set a Priority of 100.

 6. Set Goto Expression to END.

 7. Set Invoke LabelType to None.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 156

 8. Click Bind to save the binding.

 9. Click Close to return to the virtual server settings page.

Configure Keyfactor Command for Client Certificate Authentication

Once you have all the components configured on Citrix, you're ready to configure Keyfactor
Command to enable client certificate authentication for the orchestrators. Once you do this, all
orchestrators connecting to this instance of Keyfactor Command will be required to provide a certi-
ficate to authenticate. If you have some orchestrators deployed that do not support certificate
authentication (e.g. Java agents), you will need to design a solution with multiple Keyfactor
Command servers to support multiple authentication types. Contact your Keyfactor representative
for assistance with this.

To configure Keyfactor Command to require client certificate authentication for orchestrators:

 1. On the Keyfactor Command server, open the Keyfactor Configuration Wizard.

 2. In the Certificate Authentication section of the Orchestrators tab, check the Enabled box.

 3. In the Certificate Authentication HTTP Header field, enter the Header Name you gave to the
rewrite action you created to capture the certificate from the orchestrator (e.g. NS-ClientCert).
Keyfactor Command uses the certificate supplied in this header to identify the orchestrator
attempting to authenticate.

 4. In the Certificate Authentication Username and Certificate Authentication Password fields,
enter the credentials for an Active Directory service account for the orchestrator(s).

Tip: The service account entered here does not need to match the service account
entered on the Citrix device to authenticate the orchestrator.

 5. Click Verify Configuration and Apply Configuration.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 157

Figure 37: Configure Keyfactor Command for Client Certificate Authentication

Configure IIS to Provide Credentials When a Second Client Certificate is Used to
Authenticate the Proxy

If you have opted to configure the Citrix ADC device to use a client certificate to authenticate from
the device to the Keyfactor Command server instead of submitting basic authentication credentials
from the device, you will need to configure IIS on the Keyfactor Command server to recognize the
client certificate for authentication and then use basic authentication credentials on the Keyfactor
Command server to provide authorization to Keyfactor Command. In addition, you will need to
configure Keyfactor Command to force it to use the client certificate from the orchestrator stored in
the header to authenticate the orchestrator, not the client certificate presented by the proxy in the
second hop of the transaction.

Install the Required Windows Module

On your Keyfactor Command server, install the following additional module:

 l IIS Client Certificate Mapping Authentication (rather than Client Certificate Mapping
Authentication)

Tip: It's fine to install both IIS Client Certificate Mapping Authentication and Client
Certificate Mapping Authentication, but the former is what's needed for this solution.

If you have more than one Keyfactor Command server with separated roles, this only needs to be
installed on the server accepting traffic to the /KeyfactorAgents web application.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 158

Figure 38: IIS Module for Client Certificate Authentication

The PowerShell command to install the appropriate module is :

Add-WindowsFeature Web-Cert-Auth

Configure Certificate Authentication and SSL Settings in IIS

Make the following changes in the IIS Management console on the Keyfactor Command server:

 1. In the IIS Management console, highlight the server name on the left and open Authentication.
Make sure Anonymous Authentication is the only enabled method.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 159

Figure 39: Configure only Anonymous Authentication at the Server Level in IIS

 2. In the IIS Management console, drill down into sites and into the Default Web Site (or other
web site if your Keyfactor Command instance has been installed in an alternate web site).
Under the Default Web Site, locate the KeyfactorAgents application and open Authentication
for this. Disable all the authentication methods shown here.

Figure 40: Disable Authentication Methods at the Application Level in IIS

Tip: If your KeyfactorAgents endpoint is running on a standalone server with no other
Keyfactor roles, you should also disable all authentication methods at the Default Web
Site level as in step two. If your server holds other Keyfactor roles, leave this in the
default configuration with Anonymous being the only authentication method enabled as
in step one.

 3. In the IIS Management console, open SSL Settings for the KeyfactorAgents application.
Check the Require SSL box and select either Require or Accept for Client certificates.

Important: Only selected Require if your are only using orchestrators that support
client certificate authentication and plan to configure all of them for certificate authen-
tication.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 160

Figure 41: Configure SSL Settings in IIS for Client Certificate Authentication

Tip: If your KeyfactorAgents endpoint is running on a standalone server with no other
Keyfactor roles, you may also configure your server to Require or Accept for Client
certificates at the Default Web Site level. It is good security practice to check the
Require SSL box. If your KeyfactorAgents endpoint is running on a server with other
Keyfactor roles, you do not need to accept client certificates at this level and should
not require them at this level.

Configure Basic Authentication Credentials in IIS

Make the following changes in the IIS Management console on the Keyfactor Command server:

 1. In the IIS Management console, drill down to the Default Web Site (or other web site if your
Keyfactor Command instance has been installed in an alternate web site). In the Default Web
Site, open the Configuration Editor tool.

 2. In the Configuration Editor tool at the Default Web Site level, browse to:

system.webServer/security/authentication/iisClientCertificateMappingAuthentication

Important: Don't be tempted to configure this setting only at the application level
(KeyfactorAgents) rather than at the Default Web Site level. It will only work if
configured at the Default Web Site level and then enabled at the application level.

 3. In the configurations for IIS Client Certificate Mapping Authentication, set the defaultLo-
gonDomain to your forest root. Set the manyToOneCertificateMappingsEnabled option to True
and the oneToOneCertificateMappingEnabled option to False. Click the dots to the right of the
manyToOneMappings setting to open details for this setting.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 161

Figure 42: Configure IIS Client Certificate Mapping Authentication for the Default Web Site

 4. In the Collection Editor for the manytoOneMappings, click Add and enter appropriate values
for the properties. The service account entered here will be used as the identity in Keyfactor
Command of all orchestrators that authenticate via client certificate.

Figure 43: Configure Authorization Credentials for Keyfactor Orchestrators

 5. In the IIS Management console,drill down into sites and into the Default Web Site (or other web
site if your Keyfactor Command instance has been installed in an alternate web site). Under
the Default Web Site, locate the KeyfactorAgents application and open the Configuration
Editor tool for it.

 6. In the Configuration Editor tool at the KeyfactorAgents application level, browse to:

system.webServer/security/authentication/iisClientCertificateMappingAuthentication

Enable the mapping authentication option at this level. The configuration should have replic-
ated down from the Default Web Site level.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 162

Configure the Keyfactor Command Application Setting to Use the Certificate from the Header

When the orchestrator is configured to use a client certificate to authenticate to a proxy and then
the proxy is configured to use a separate client certificate to authenticate to the Keyfactor
Command server, authentication to the Keyfactor Command application should be done using the
original certificate from the orchestrator, not the certificate inserted in the process at the proxy
level. This is done by including the original certificate from the orchestrator in the request header
to Keyfactor Command. To assure that Keyfactor Command gives priority to this certificate and
not the certificate the proxy uses to authenticate, set the Keyfactor Command authentication
application setting Always Use Certificate from Header to True.

Figure 44: Configure Application Setting in Keyfactor Command to use the Header Certificate

Tip: In some proxy configurations, the proxy may be unable to negotiate the client certificate
handshake with IIS. IIS won't ask directly for a client certificate, and if, during the handshake,
the proxy doesn't send one, the client authentication will fail. If this occurs, you may need to
enable client certificate negotiation at a lower level below IIS. To do this:

 1. On the Keyfactor Command server, open a command prompt using the “Run as admin-
istrator” option.

 2. Execute the following command to output the current configuration for SSL certificate
bindings:

netsh http show sslcert

Output from this command will look something like this (you may see multiple sections if
you have multiple web sites on the server):

11.4 Keyfactor Orchestrators Installation and Configuration Guide 163

SSL Certificate bindings:

 IP:port : 0.0.0.0:443
 Certificate Hash : 649dfa6df693583f609af499fe4237f2c1d64224
 Application ID : {4dc3e181-e14b-4a21-b022-59fc669b0914}
 Certificate Store Name : My
 Verify Client Certificate Revocation : Enabled
 Verify Revocation Using Cached Client Certificate Only : Disabled
 Usage Check : Enabled
 Revocation Freshness Time : 0
 URL Retrieval Timeout : 0
 Ctl Identifier : (null)
 Ctl Store Name : (null)
 DS Mapper Usage : Enabled
 Negotiate Client Certificate : Disabled
 Reject Connections : Disabled
 Disable HTTP2 : Not Set
 Disable QUIC : Not Set
 Disable TLS1.2 : Not Set
 Disable TLS1.3 : Not Set
 Disable OCSP Stapling : Not Set
 Disable Legacy TLS Versions : Not Set

 3. Look at the value for the Negotiate Client Certificate setting for the web site on which
Keyfactor Command is installed. If the value is Disabled, retrieve from the output the
values for the IP:port, Certificate Hash, and Application ID.

 4. Execute the following commands to remove and re-add the IP:port with Negotiate Client
Certificate enabled (referencing the correct values for ipport, certhash, and appid):

netsh http delete sslcert ipport=0.0.0.0:443
netsh http add sslcert ipport=0.0.0.0:443
certhash=649dfa6df693583f609af499fe4237f2c1d64224 appid={4dc3e181-e14b-4a21-
b022-59fc669b0914} clientcertnegotiation=enable

 5. Execute the show command again to confirm that the setting is now shown as enabled.

 6. Restart the IIS services (iisreset) and try the certificate authentication again.

2.6.3 Appendix - Set up the Universal Orchestrator to Use Client Certificate
Authentication with Certificates Stored in Active Directory

The Keyfactor Universal Orchestrator can be configured to support client certificate authentication
by acquiring a certificate for the Keyfactor Command connect service account user or machine

11.4 Keyfactor Orchestrators Installation and Configuration Guide 164

account of the orchestrator and storing it in Active Directory and then providing the associated
Active Directory credentials to authenticate to Keyfactor Command. This has an advantage over the
reverse proxy method (see Appendix - Set up the Universal Orchestrator to Use Client Certificate
Authentication via a Reverse Proxy: Citrix ADC on page 151) in that a username and password do not
need to be stored anywhere (other than in Active Directory). This method does have a heavier reli-
ance on Active Directory.

Complete the following steps and then configure the orchestrator to enable client certificate authen-
tication as per the installation instructions (see -ClientCertificate (Client Certificate Authentication)
on page 31 or Install the Universal Orchestrator on a Linux Server on page 40).

Tip: Using this method, you do not necessarily need to configure certificate authentication in
Keyfactor Command, unlike for the proxy method (see Appendix - Set up the Universal
Orchestrator to Use Client Certificate Authentication via a Reverse Proxy: Citrix ADC on
page 151), since the certificate authentication is occurring at the IIS layer before the request
reaches Keyfactor Command. You may wish to configure certificate authentication in
Keyfactor Command to allow Keyfactor Command to monitor certificate authentication and to
support automated certificate renewal (see Register a Client Certificate Renewal Extension
on page 89). If you enable certificate authentication in Keyfactor Command with this method,
you will need to provide a value in the Certificate Authentication HTTP Header field. This
header field is used to pass the certificate contents to Keyfactor Command command in
instances when the certificate is not used directly (such as in the reverse proxy scenario).
The value is required when configuring certificate authentication in Keyfactor Command, but
since for this method you do not need to extract the certificate from the header, the value you
set here is unimportant.

Important: If you do opt to enable certificate authentication in Keyfactor Command,
be aware that this will force all orchestrators to use certificate authentication when
communicating with Keyfactor Command on the configured server.

Figure 45: Client Certificate Authentication with AD Storage Does Not Require Certificate Authentication Config-
uration in Keyfactor Command

11.4 Keyfactor Orchestrators Installation and Configuration Guide 165

Note: The following instructions assume that your Keyfactor Command server is already
installed and configured with an SSL certificate that is trusted in your environment. If this is
not the case, this will also need to be done.

Install the Required Windows Module

On your Keyfactor Command server, install the following additional module:

 l Client Certificate Mapping Authentication (rather than IIS Client Certificate Mapping Authentic-
ation)

If you have more than one Keyfactor Command server with separated roles, this only needs to be
installed on the server accepting traffic to the /KeyfactorAgents web application.

Figure 46: IIS Module for Client Certificate Authentication with AD Storage

The PowerShell command to install the appropriate module is :

Add-WindowsFeature Web-Client-Auth

11.4 Keyfactor Orchestrators Installation and Configuration Guide 166

Configure Certificate Authentication and SSL Settings in IIS

Make the following changes in the IIS Management console on the Keyfactor Command server:

 1. In the IIS Management console, highlight the server name on the left and open Authentication.
Change the status of Active Directory Client Certificate Authentication to Enabled.

Figure 47: Configure Client Certificate Authentication at the Server Level in IIS

 2. In the IIS Management console, drill down into sites and into the Default Web Site (or other web
site if your Keyfactor Command instance has been installed in an alternate web site). Under the
Default Web Site, locate the KeyfactorAgents application and open Authentication for this.
Disable all the authentication methods shown here. The Active Directory Client Certificate
Authentication method does not appear here.

Figure 48: Disable Authentication Methods at the Application Level in IIS

Tip: At the Default Web Site level, the only authentication method that should be enabled
is Anonymous. This should not be changed.

 3. In the IIS Management console, open SSL Settings for the KeyfactorAgents application. Check
the Require SSL box and select either Require or Accept for Client certificates.

Important: Only selected Require if your are only using orchestrators that support client
certificate authentication and plan to configure all of them for certificate authentication.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 167

Figure 49: Configure SSL Settings in IIS for Client Certificate Authentication

Tip: At the Default Web Site level, it is good security practice to check the Require SSL
box, but you do not need to accept client certificates at this level and should not require
them at this level.

Create a Certificate Template for Orchestrator Certificates

This method of certificate authentication functions by sending a client certificate from the orches-
trator to IIS on the Keyfactor Command server, where IIS does a lookup in Active Directory to
determine what Active Directory user is associated with that certificate and then turns around and
uses that identity to connect to Keyfactor Command. In order for the certificate to be associated
with the Active Directory identity, it must be enrolled using a template that has the Publish certi-
ficate in Active Directory option enabled.

To create the certificate template that will be used for orchestrator client authentication certi-
ficates, start by duplicating a template with a Computer subject type. In addition to any standards for
your environment, the templates needs:

11.4 Keyfactor Orchestrators Installation and Configuration Guide 168

 l The Publish certificate in Active Directory box checked.

Figure 50: Microsoft Certificate Template General for Client Authentication Certificate

 l A key usage that includes Digital Signature.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 169

Figure 51: Microsoft Certificate Template Request Handling for Client Authentication Certificate

11.4 Keyfactor Orchestrators Installation and Configuration Guide 170

 l An extended key usage (EKU) of Client Authentication.

Figure 52: Microsoft Certificate Template Application Policies for Client Authentication Certificate

 l Enroll permissions for either the service account that the orchestrator will run as or the machine
account for the orchestrator machine.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 171

Figure 53: Microsoft Certificate Template Security for Client Authentication Certificate

Enroll for a Client Authentication Certificate

To acquire a certificate for use by the Universal Orchestrator using a Microsoft CA, first create a
template using the appropriate configurations as described above and make it available for enroll-
ment on a CA to which the Universal Orchestrator machine has access. If you plan to enroll for the
certificate through Keyfactor Command, you will also need to enable the template for enrollment in
Keyfactor Command.

You can enroll for a client authentication certificate for the orchestrator in a variety of ways. The
certificate needs to be installed in the local computer personal store on the Windows server on
which the orchestrator is installed. Some possible ways to do this are:

 l Use Keyfactor Command to enroll for the certificate using the PFX enrollment method and then
import the PFX file on the orchestrator server. If you select this method, you will need to login to
the Keyfactor Command Management Portal as the orchestrator service account being used on
the Keyfactor Command side of the fence (see Create Service Accounts for the Universal
Orchestrator on page 11) in order to enroll for the certificate in the correct context or use the
Keyfactor API to submit a request in a specific user context (see PFX Enrollment in Keyfactor
Command Using a PowerShell Script on the next page). The orchestrator service account will
need enroll permissions on the CA, on the template, and in Keyfactor Command.

 l Use IIS or the certificates MMC on the orchestrator server to generate a CSR, use the
Keyfactor Command CSR enrollment method to enroll for a certificate using the CSR, and then
import the CSR on the orchestrator server, marrying it with the private key generated on the

11.4 Keyfactor Orchestrators Installation and Configuration Guide 172

server. If you select this method, you will need to login to the Keyfactor Command Management
Portal as the orchestrator service account being used on the Keyfactor Command side of the
fence (see Create Service Accounts for the Universal Orchestrator on page 11) in order to enroll
for the certificate in the correct context. The orchestrator service account will need enroll
permissions on the CA, on the template, and in Keyfactor Command.

 l If there is an existing Universal Orchestrator on the server already running and communicating
with Keyfactor Command, use the Keyfactor Command PFX enrollment method and push the
certificate out to the certificate store on the orchestrator server using Keyfactor Command. If
you select this method, you will need to login to the Keyfactor Command Management Portal as
the orchestrator service account being used on the Keyfactor Command side of the fence (see
Create Service Accounts for the Universal Orchestrator on page 11) in order to enroll for the
certificate in the correct context or use the Keyfactor API to submit a request in a specific user
context (see PFX Enrollment in Keyfactor Command Using a PowerShell Script below). The
orchestrator service account will need enroll permissions on the CA, on the template, and in
Keyfactor Command.

 l Use the Microsoft MMC on the orchestrator server to enroll for a certificate. If you select this
method, the orchestrator will connect to Keyfactor Command using the orchestrator machine
account rather than an Active Directory user account. The orchestrator machine account will
need enroll permissions on the CA and on the template. This method will only work for servers
joined to the same Active Directory forest in which Keyfactor Command is installed.

PFX Enrollment in Keyfactor Command Using a PowerShell Script

To enroll for a certificate using the PFX enrollment method in Keyfactor Command, you can either
do this in the Keyfactor Command Management Portal while logged in as the orchestrator service
account or with a PowerShell script. In either case, the orchestrator service account will need
PFX enroll permissions in Keyfactor Command. Below is a sample PowerShell script. Once the
PFX file has been generated, import it into the local machine store on the orchestrator server.

Tip: The service account you provide in the PowerShell script is the service account used
to provide a connection from the orchestrator to Keyfactor Command. This is not neces-
sarily the same service account that runs the orchestrator service on the orchestrator
server. For an orchestrator in a separate forest from Keyfactor Command, this would be a
service account in the Keyfactor Command forest, not the orchestrator forest. See Create
Service Accounts for the Universal Orchestrator on page 11.

#Set variables with the username and password for the orchestrator service account
$orchUsername = 'KEYEXAMPLE\svc_kyforch'
$orchPassword = 'MySecureServiceAccountPassword'
$pair = "$($orchUsername):$($orchPassword)"

Base-64 encode the service account credentials

11.4 Keyfactor Orchestrators Installation and Configuration Guide 173

$encodedCreds = [System.Convert]::ToBase64String([System.Text.Encoding]::ASCII.GetBytes
($pair))

$UTCTime = (Get-Date).ToUniversalTime().ToString("yyyy-MM-ddTHH:mm:ssZ")
$keyfactorServer = 'keyfactor.keyexample.com' # FQDN of the Keyfactor Command server
$caName = 'corpca01.keyexample.com\CorpIssuing01' # CA to use for the enrollment
$templateName = 'KeyfactorOrchestratorAuth' # Template to use for the enrollment
$certSubject = 'Orchestrator Cert Auth' # Using a template that is configured to build
from AD will cause this subject to be replaced
$pfxPassword = 'MySecurePFXPassword' # Password for the resulting PFX file
$outputFile = 'C:\stuff\OrchCertAuth.pfx' # Path and file name for the PFX file to be
generated

$basicAuthValue = "Basic $encodedCreds"

$headers = @{
"Authorization"=$basicAuthValue
"Accept"="application/json"
"x-keyfactor-requested-with"="APIClient"
"x-certificateformat"="PFX"
}

$body = @{
"Password" = "$pfxPassword"
"Subject" = "$certSubject"
"IncludeChain" = "true"
"CertificateAuthority" = "$caName"
"Timestamp" = "$UTCTime"
"Template" = "$templateName"
}
Output response as a PFX file
$response = Invoke-WebRequest -Uri "https://$key-
factorServer/KeyfactorAPI/Enrollment/PFX" -Method:Post -Headers $headers -ContentType
"application/json" `
 -Body ($body|ConvertTo-Json) -ErrorAction:Stop -TimeoutSec 60
$ResponseContent = $response.Content | ConvertFrom-Json
$bytes = [Convert]::FromBase64String($ResponseContent.CertificateInformation.Pkcs12Blob)
[IO.File]::WriteAllBytes($outputFile, $bytes)

11.4 Keyfactor Orchestrators Installation and Configuration Guide 174

PFX Enrollment and Deployment in Keyfactor Command Using a PowerShell Script

To enroll for a certificate using the PFX enrollment method in Keyfactor Command and deploy it to
the orchestrator server using Keyfactor Command, you can either do this in the Keyfactor
Command Management Portal while logged in as the orchestrator service account or with a Power-
Shell script. In either case, the orchestrator service account will need PFX enroll permissions and
certificate store management permissions in Keyfactor Command. Below is a sample PowerShell
script. This solution is only an option if your orchestrator is already up and running and success-
fully authenticating to Keyfactor Command using standard authentication (or previously configured
certificate authentication).

Tip: The service account you provide in the PowerShell script is the service account used
to provide a connection from the orchestrator to Keyfactor Command. This is not neces-
sarily the same service account that runs the orchestrator service on the orchestrator
server. For an orchestrator in a separate forest from Keyfactor Command, this would be a
service account in the Keyfactor Command forest, not the orchestrator forest. See Create
Service Accounts for the Universal Orchestrator on page 11.

#Set variables with the username and password for the orchestrator service account
$orchUsername = 'KEYEXAMPLE\svc_kyforch'
$orchPassword = 'MySecureServiceAccountPassword'
$pair = "$($orchUsername):$($orchPassword)"

Base-64 encode the service account credentials
$encodedCreds = [System.Convert]::ToBase64String([System.Text.Encoding]::ASCII.GetBytes
($pair))

$UTCTime = (Get-Date).ToUniversalTime().ToString("yyyy-MM-ddTHH:mm:ssZ")
$keyfactorServer = '">keyfactor.keyexample.com' # FQDN of the Keyfactor Command server
$storeName = 'websrvr38.keyexample.com' # FQDN of the orchestrator server as defined as
a certificate store in Keyfactor Command
$caName = 'corpca01.keyexample.com\CorpIssuing01' # CA to use for the enrollment
$templateName = 'KeyfactorOrchestratorAuth' # Template to use for the enrollment
$certSubject = 'Orchestrator Cert Auth' # Using a template that is configured to build
from AD will cause this subject to be replaced

$basicAuthValue = "Basic $encodedCreds"

$enrollHeaders = @{
 "Authorization"=$basicAuthValue
 "Accept"="application/json"

11.4 Keyfactor Orchestrators Installation and Configuration Guide 175

 "x-keyfactor-requested-with"="APIClient
 "x-certificateformat"="Store"
}

$deployHeaders = @{
 "Authorization"=$basicAuthValue
 "Accept"="application/json"
 "x-keyfactor-requested-with"="APIClient"
}

$enrollBody = @{
 "Subject" = "$certSubject"
 "IncludeChain" = "true"
 "CertificateAuthority" = "$caName"
 "Timestamp" = "$UTCTime"
 "Template" = "$templateName"
}

Enroll for a certificate using the PFX enrollment method and retrieve the certificate
ID from the response (as part of the content)
$enrollResponse = Invoke-WebRequest -Uri "https://$key-
factorServer/KeyfactorAPI/Enrollment/PFX" -Method:Post -Headers $enrollHeaders -
ContentType "application/json" `
 -Body ($enrollBody|ConvertTo-Json) -ErrorAction:Stop -TimeoutSec 60
$enrollContent = $enrollResponse.Content | ConvertFrom-Json

Get the store GUID for the certificate store specified by the client machine name in
the query string with the storeName variable
$storeInfo = Invoke-WebRequest -Uri "https://$key-
factorServer-
/KeyfactorAPI/CertificateStores?certificateStoreQuery.queryString=ClientMachine%20-
eq%20%22$storeName%22" `
 -Method:Get -Headers $deployHeaders -ContentType "application/json" -ErrorAction:Stop
-TimeoutSec 60
$storeContent = $storeInfo.Content | ConvertFrom-Json
$storeGUID = $storeContent.Id

$deployBody = @{
 "StoreIds" = @("$storeGUID")
 "StoreTypes" = @(

11.4 Keyfactor Orchestrators Installation and Configuration Guide 176

 @{
 "StoreTypeId" = 6 # Store type 6 is IIS personal
 "Overwrite" = "false"
 }
)
 "CertificateId" = $enrollContent.CertificateInformation.KeyfactorId
}

Deploy certificate to certificate store
Invoke-WebRequest -Uri "https://$keyfactorServer/KeyfactorAPI/Enrollment/PFX/Deploy" -
Method:Post -Headers $deployHeaders -ContentType "application/json" `
 -Body ($deployBody|ConvertTo-Json) -ErrorAction:Stop -TimeoutSec 60

MMC Enrollment

To enroll for a certificate using the MMC:

 1. On the Universal Orchestrator machine, do one of following:
 l Using the GUI:

 a. Open an empty instance of the Microsoft Management Console (MMC).

 b. Choose File->Add/Remove Snap-in….

 c. In the Available snap-ins column, highlight Certificates and click Add.

 d. In the Certificates snap-in popup, choose the radio button for Computer account,
click Next, accept the default of Local computer, and click Finish.

 e. Click OK to close the Add or Remove Snap-ins dialog.

 l Using the command line:

 a. Open a command prompt using the “Run as administrator” option.

 b. Within the command prompt type the following to open the certificates MMC:
certlm.msc

 2. Drill down to the Personal folder under Certificates for the Local Computer, right-click, and
choose All Tasks->Request New Certificate….

 3. Follow the certificate enrollment wizard, selecting the template you created for orchestrator
certificate authentication and providing any required information.

Grant the Service Account Certificate Private Key Permissions

Whichever method you decide to use to acquire the client authentication certificate for the orches-
trator, you will need to grant the Universal Orchestrator service account—the account that the

11.4 Keyfactor Orchestrators Installation and Configuration Guide 177

orchestrator service is running as on the server—permissions to read the private key of that certi-
ficate.

Tip: If the service account is a member of the local administrators group, this step may not be
necessary, since the local administrators group is typically granted these permissions auto-
matically.

To grant private key permissions on the certificate using the MMC:

 1. On the Universal Orchestrator machine, do one of following:
 l Using the GUI:

 a. Open an empty instance of the Microsoft Management Console (MMC).

 b. Choose File->Add/Remove Snap-in….

 c. In the Available snap-ins column, highlight Certificates and click Add.

 d. In the Certificates snap-in popup, choose the radio button for Computer account,
click Next, accept the default of Local computer, and click Finish.

 e. Click OK to close the Add or Remove Snap-ins dialog.

 l Using the command line:

 a. Open a command prompt using the “Run as administrator” option.

 b. Within the command prompt type the following to open the certificates MMC:
certlm.msc

 2. Drill down to the Personal folder under Certificates for the Local Computer to locate the certi-
ficate.

 3. Highlight the certificate and choose All Tasks->Manage Private Keys….

 4. In the Permissions for private keys dialog, click Add, add the service account under which the
Universal Orchestrator is running (created as per Create Service Accounts for the Universal
Orchestrator on page 11), and grant that service account Read but not Full control permissions.
Click OK to save.

Tip: If you receive the following error when selecting your certificate in the orchestrator
configuration wizard:

The request was aborted: Could not create SSL/TLS secure channel.

 l Confirm that the orchestrator server trusts the root and issuing certificates for the SSL
certificate on the Keyfactor Command server and the client authentication certificate you
are trying to use (see Configure Certificate Root Trust for the Universal Orchestrator on
page 15).

11.4 Keyfactor Orchestrators Installation and Configuration Guide 178

 l Confirm that the orchestrator server has access to the CRLs for both the SSL certificate
on the Keyfactor Command server and the client authentication certificate you are trying
to use and that these CRLs are valid.

 l Confirm that you have granted the service account under which the orchestrator service
runs private key permissions on the client authentication certificate.

2.6.4 Appendix - Set up the Universal Orchestrator to Use a Forwarding Proxy

Typically with services that use a forwarding proxy, there is a specific proxy configuration done
within the application, but the Universal Orchestrator doesn't have such a configuration. Instead, it
makes use of an environment variable to retrieve this information on either Windows or Linux.

On Windows, configure a system environment variable of either HTTP_PROXY or HTTPS_PROXY
(this is not case sensitive on Windows) pointing to your proxy's URL, including port, then restart the
Universal Orchestrator service if the orchestrator is already installed.

Figure 54: System Environment Variable to Define a Proxy URL for Use by the Universal Orchestrator on Windows

On Linux, there are multiple approaches to setting an environment variable. One method for setting
a system-wide environment variable that will be retained after reboot is to add an environment vari-
able statement to the /etc/environment file using a command similar to the following (as root):

echo https_proxy=https://myproxy.keyexample.com:3128/" >> /etc/environment

11.4 Keyfactor Orchestrators Installation and Configuration Guide 179

After setting the environment variable, restart the Universal Orchestrator service if the orchestrator
has already been installed.

Note: If you've configured an HTTPS_PROXY environment variable because you're using a
secure channel to communicate with Keyfactor Command (SSL), you will most likely also need
an HTTP_PROXY environment variable for the orchestrator to do revocation status (CRL)
checking unless you disable revocation status checking.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 180

3.0 Glossary

11.4 Keyfactor Orchestrators Installation and Configuration Guide 181

Glossary: AIA – Certificate Signing Request

A

AIA

The authority information access (AIA) is
included in a certificate--if configured--and
identifies a location from which the chain
certificates for that certificate may be
retrieved.

AnyAgent

The AnyAgent, one of Keyfactor's suite of
orchestrators, is used to allow management
of certificates regardless of source or loca-
tion by allowing customers to implement
custom agent functionality via an API.

AnyGateway

The Keyfactor AnyGateway is a generic
third party CA gateway framework that
allows existing CA gateways and custom CA
connections to share the same overall
product framework.

API

A set of functions to allow creation of applic-
ations. Keyfactor offers the Keyfactor API,
which allows third-party software to integ-
rate with the advanced certificate enroll-
ment and management features of Keyfactor
Command.

Argument

A parameter or argument is a value that is
passed into a function in an application.

Authority Information Access

The authority information access (AIA) is
included in a certificate--if configured--and
identifies a location from which the chain
certificates for that certificate may be
retrieved.

B

Bash Orchestrator

The Bash Orchestrator, one of Keyfactor's
suite of orchestrators, is used to discover
and manage SSH keys across an enterprise.

Blueprint

A snapshot of the certificate stores and
scheduled jobs on one orchestrator, which
can be used to create matching certificate
stores and jobs on another orchestrator
with just a few clicks.

C

CA

A certificate authority (CA) is an entity that
issues digital certificates. Within Keyfactor
Command, a CA may be a Microsoft CA or a
Keyfactor gateway to a cloud-based or
remote CA.

Certificate Authority

A certificate authority (CA) is an entity that
issues digital certificates. Within Keyfactor
Command, a CA may be a Microsoft CA or a
Keyfactor gateway to a cloud-based or
remote CA.

Certificate Revocation List

A Certificate Revocation List (CRL) is a list
of digital certificates that have been
revoked by the issuing Certificate Authority
(CA) before their scheduled expiration date
and should no longer be trusted.

Certificate Signing Request

A CSR or certificate signing request is a
block of encoded text that is submitted to a
CA when enrolling for a certificate. When
you generate a CSR within Keyfactor

11.4 Keyfactor Orchestrators Installation and Configuration Guide 182

Glossary: CN – Distinquished Name

Command, the matching private key for it is
stored in Keyfactor Command in encrypted
format and will be married with the certi-
ficate once returned from the CA.

CN

A common name (CN) is the component of a
distinguished name (DN) that represents the
primary name of the object. The value varies
depending on the type of object. For a user
object, this would be the user's name (e.g.
CN=John Smith). For SSL certificates, the
CN is typically the fully qualified domain
name (FQDN) of the host where the SSL
certificate will reside (e.g. server-
name.keyexample.com or
www.keyexample.com).

Collection

The certificate search function allows you to
query the Keyfactor Command database for
certificates from any available source based
on any criteria of the certificates and save
the results as a collection that will be
availble in other places in the Management
Portal (e.g. expiration alerts and certain
reports).

Common Name

A common name (CN) is the component of a
distinguished name (DN) that represents the
primary name of the object. The value varies
depending on the type of object. For a user
object, this would be the user's name (e.g.
CN=John Smith). For SSL certificates, the
CN is typically the fully qualified domain
name (FQDN) of the host where the SSL
certificate will reside (e.g. server-
name.keyexample.com or
www.keyexample.com).

Configuration Tenant

A grouping of CAs. The Microsoft concept
of forests is not used in EJBCA so to

accommodate the new EJBCA functionality,
and to avoid confusion, the term forest
needed to be renamed. The new name is
configuration tenant. For EJBCA, there
would be one configuration tenant per
EJBCA server install. For Microsoft, there
would be one per forest. Note that config-
uration tenants cannot be mixed, so
Microsoft and EJBCA cannot exist on the
same configuration tenant.

CRL

A Certificate Revocation List (CRL) is a list
of digital certificates that have been
revoked by the issuing Certificate Authority
(CA) before their scheduled expiration date
and should no longer be trusted.

CSR

A CSR or certificate signing request is a
block of encoded text that is submitted to a
CA when enrolling for a certificate. When
you generate a CSR within Keyfactor
Command, the matching private key for it is
stored in Keyfactor Command in encrypted
format and will be married with the certi-
ficate once returned from the CA.

D

DER

A DER format certificate file is a DER-
encoded binary certificate. It contains a
single certificate and does not support
storage of private keys. It sometimes has an
extension of .der but is often seen with .cer
or .crt.

Distinquished Name

A distinguished name (DN) is the name that
uniquely identifies an object in a directory.
In the context of Keyfactor Command, this
directory is generally Active Directory. A DN
is made up of attribute=value pairs,

11.4 Keyfactor Orchestrators Installation and Configuration Guide 183

Glossary: DN – Hosted Config Portal

separated by commas. Any of the attributes
defined in the directory schema can be used
to make up a DN.

DN

A distinguished name (DN) is the name that
uniquely identifies an object in a directory.
In the context of Keyfactor Command, this
directory is generally Active Directory. A DN
is made up of attribute=value pairs, separ-
ated by commas. Any of the attributes
defined in the directory schema can be used
to make up a DN.

DNS

The Domain Name System is a service that
translates names into IP addresses.

E

ECC

Elliptical curve cryptography (ECC) is a
public key encryption technique based on
elliptic curve theory that can be used to
create faster, smaller, and more efficient
cryptographic keys. ECC generates keys
through the properties of the elliptic curve
equation instead of the traditional method of
generation as the product of very large
prime numbers.

Endpoint

An endpoint is a URL that enables the API to
gain access to resources on a server.

Enrollment

Certificate enrollment refers to the process
by which a user requests a digital certi-
ficate. The user must submit the request to
a certificate authority (CA).

EOBO

A user with an enrollment agent certificate
can enroll for a certificate on behalf of
another user. This is often used when provi-
sioning technology such as smart cards.

F

Forest

An Active Directory forest (AD forest) is the
top most logical container in an Active
Directory configuration that contains
domains, and objects such as users and
computers.

G

Gateway Connector

The Keyfactor Gateway Connector is
installed in the customer forest to provide a
connection between the on-premise CA and
the Azure-hosted, Keyfactor managed
Hosted Configuration Portal to provide
support for synchronization, enrollment and
management of certificates through the
Azure-hosted instance of Keyfactor
Command for the on-premise CA. It is
supported on both Windows and Linux.

H

Host Name

The unique identifier that serves as name of
a computer. It is sometimes presented as a
fully qualified domain name (e.g. server-
name.keyexample.com) and sometimes just
as a short name (e.g. servername).

Hosted Config Portal

The Keyfactor Hosted Configuration Portal
is used to configure connections between
on-premise instances of the Keyfactor

11.4 Keyfactor Orchestrators Installation and Configuration Guide 184

Glossary: Hosted Configuration Portal – Keyfactor CA Management Gateway

Gateway Connector and and on-premise
CAs to make them available to Azure-hosted
instance of Keyfactor Command.The portal
is Azure-hosted and managed by Keyfactor.

Hosted Configuration Portal

The Keyfactor Hosted Configuration Portal
is used to configure connections between
on-premise instances of the Keyfactor
Gateway Connector and and on-premise
CAs to make them available to Azure-hosted
instance of Keyfactor Command.The portal
is Azure-hosted and managed by Keyfactor.

Hostname

The unique identifier that serves as name of
a computer. It is sometimes presented as a
fully qualified domain name (e.g. server-
name.keyexample.com) and sometimes just
as a short name (e.g. servername).

J

Java Agent

The Java Agent, one of Keyfactor's suite of
orchestrators, is used to perform discovery
of Java keystores and PEM certificate
stores, to inventory discovered stores, and
to push certificates out to stores as
needed.

Java Keystore

A Java KeyStore (JKS) is a file containing
security certificates with matching private
keys. They are often used by Java-based
applications for authentication and encryp-
tion.

JKS

A Java KeyStore (JKS) is a file containing
security certificates with matching private
keys. They are often used by Java-based

applications for authentication and encryp-
tion.

K

Key Length

The key size or key length is the number of
bits in a key used by a cryptographic
algorithm.

Key Pair

In asymmetric cryptography, public keys are
used together in a key pair with a private
key. The private key is retained by the key's
creator while the public key is widely distrib-
uted to any user or target needing to
interact with the holder of the private key.

Key Size

The key size or key length is the number of
bits in a key used by a cryptographic
algorithm.

Key Type

The key type identifies the type of key to
create when creating a symmetric or asym-
metric key. It references the signing
algorithm and often key size (e.g. AES-256,
RSA-2048, Ed25519).

Keyfactor CA Management Gateway

The Keyfactor CA Management Gateway is
made up of the Keyfactor Gateway
Connector, installed in the customer forest
to provide a connection to the local CA, and
the Azure-hosted and Keyfactor managed
Hosted Configuration Portal. The solution is
used to provide a connection between a
customer's on-premise CA and an Azure-
hosted instance of Keyfactor Command for
synchronization, enrollment, and manage-
ment of certificates.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 185

Glossary: Keyfactor Gateway Connector – OID

Keyfactor Gateway Connector

The Keyfactor Gateway Connector is
installed in the customer forest to provide a
connection between the on-premise CA and
the Azure-hosted, Keyfactor managed
Hosted Configuration Portal to provide
support for synchronization, enrollment and
management of certificates through the
Azure-hosted instance of Keyfactor
Command for the on-premise CA. It is
supported on both Windows and Linux.

Keyfactor Universal Orchestrator

The Keyfactor Universal Orchestrator, one
of Keyfactor's suite of orchestrators, is
used to interact with servers and devices
for certificate management, run SSL
discovery and management tasks, and
manage synchronization of certificate
authorities in remote forests. With the addi-
tion of custom extensions, it can provide
certificate management capabilities on a
variety of platforms and devices (e.g.
Amazon Web Services (AWS) resources,
Citrix\NetScaler devices, F5 devices, IIS
stores, JKS keystores, PEM stores, and
PKCS#12 stores) and execute tasks outside
the standard list of certificate management
functions. It runs on either Windows or
Linux servers or Linux containers.

Keystore

A Java KeyStore (JKS) is a file containing
security certificates with matching private
keys. They are often used by Java-based
applications for authentication and encryp-
tion.

L

Logical Name

The logical name of a CA is the common
name given to the CA at the time it is
created. For Microsoft CAs, this name can

be seen at the top of the Certificate
Authority MMC snap-in. It is part of the
FQDN\Logical Name string that is used to
refer to CAs when using command-line tools
and in some Keyfactor Command config-
uration settings (e.g. ca2.keyexample.-
com\Corp Issuing CA Two).

M

MAC Agent

The MAC Agent, one of Keyfactor's suite of
orchestrators, is used to manage certi-
ficates on any keychains on the Mac on
which the Keyfactor MAC Agent is installed.

Metadata

Metadata provides information about a
piece of data. It is used to summarize basic
information about data, which can make
working with the data easier. In the context
of Keyfactor Command, the certificate
metadata feature allows you to create
custom metadata fields that allow you to tag
certificates with tracking information about
certificates.

O

Object Identifier

Object identifiers or OIDs are a stand-
ardized system for identifying any object,
concept, or "thing" with a globally unam-
biguous persistent name.

OID

Object identifiers or OIDs are a stand-
ardized system for identifying any object,
concept, or "thing" with a globally unam-
biguous persistent name.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 186

Glossary: Orchestrator – PKCS#12

Orchestrator

Keyfactor orchestrators perform a variety of
functions, including managing certificate
stores and SSH key stores.

P

P12

A PFX file (personal information exchange
format), also known as a PKCS#12 archive,
is a single, password-protected certificate
archive that contains both the public and
matching private key and, optionally, the
certificate chain. It is a common format for
Windows servers.

P7B

A PKCS #7 format certificate file is a
base64-encoded certificate. Since it's
presented in ASCII, you can open it in any
text editor. PKCS #7 certificates always
begin and end with entries that look some-
thing like ---- BEGIN CERTIFICATE---- and
----END CERTIFICATE----. Unlike PEM files,
PKCS #7 files can contain only a certificate
and its certifiate chain but NOT its private
key. Extensions of .p7b or .p7c are usually
seen on certificate files of this format.

P7C

A PKCS #7 format certificate file is a
base64-encoded certificate. Since it's
presented in ASCII, you can open it in any
text editor. PKCS #7 certificates always
begin and end with entries that look some-
thing like ---- BEGIN CERTIFICATE---- and
----END CERTIFICATE----. Unlike PEM files,
PKCS #7 files can contain only a certificate
and its certifiate chain but NOT its private
key. Extensions of .p7b or .p7c are usually
seen on certificate files of this format.

Parameter

A parameter or argument is a value that is
passed into a function in an application.

PEM

A PEM format certificate file is a base64-
encoded certificate. Since it's presented in
ASCII, you can open it in any text editor.
PEM certificates always begin and end with
entries like ---- BEGIN CERTIFICATE----
and ----END CERTIFICATE----. PEM certi-
ficates can contain a single certificate or a
full certifiate chain and may contain a
private key. Usually, extensions of .cer and
.crt are certificate files with no private key,
.key is a separate private key file, and .pem
is both a certificate and private key.

PFX

A PFX file (personal information exchange
format), also known as a PKCS#12 archive,
is a single, password-protected certificate
archive that contains both the public and
matching private key and, optionally, the
certificate chain. It is a common format for
Windows servers.

PKCS #7

A PKCS #7 format certificate file is a
base64-encoded certificate. Since it's
presented in ASCII, you can open it in any
text editor. PKCS #7 certificates always
begin and end with entries that look some-
thing like ---- BEGIN CERTIFICATE---- and
----END CERTIFICATE----. Unlike PEM files,
PKCS #7 files can contain only a certificate
and its certifiate chain but NOT its private
key. Extensions of .p7b or .p7c are usually
seen on certificate files of this format.

PKCS#12

A PFX file (personal information exchange
format), also known as a PKCS#12 archive,

11.4 Keyfactor Orchestrators Installation and Configuration Guide 187

Glossary: PKI – SAN

is a single, password-protected certificate
archive that contains both the public and
matching private key and, optionally, the
certificate chain. It is a common format for
Windows servers.

PKI

A public key infrastructure (PKI) is a set of
roles, policies, and procedures needed to
create, manage, distribute, use, store and
revoke digital certificates and manage
public-key encryption.

Private Key

Private keys are used in cryptography
(symmetric and asymmetric) to encrypt or
sign content. In asymmetric cryptography,
they are used together in a key pair with a
public key. The private or secret key is
retained by the key's creator, making it
highly secure.

Public Key

In asymmetric cryptography, public keys are
used together in a key pair with a private
key. The private key is retained by the key's
creator while the public key is widely distrib-
uted to any user or target needing to
interact with the holder of the private key.

Public Key Infrastructure

A public key infrastructure (PKI) is a set of
roles, policies, and procedures needed to
create, manage, distribute, use, store and
revoke digital certificates and manage
public-key encryption.

R

Rogue Key

A rogue key, in the context of Keyfactor
Command, is an SSH public key that
appears in an authorized_keys file on a

server managed by the SSH orchestrator
without authorization.

Root of Trust

A root of trust (RoT) is a source within a
cryptographic system that can always be
trusted. It is typically a hardened hardware
module. HSMs (hardware security modules)
and TPMs (trusted platform modules) are
examples of RoTs.

RoT

A root of trust (RoT) is a source within a
cryptographic system that can always be
trusted. It is typically a hardened hardware
module. HSMs (hardware security modules)
and TPMs (trusted platform modules) are
examples of RoTs.

RPC

Remote procedure call (RPC) allows one
program to call a function from a program
located on another computer on a network
without specifying network details. In the
context of Keyfactor Command, RPC errors
often indicate Kerberos authentication or
delegation issues.

rsyslog

Rsyslog is an open-source software utility
used on UNIX and Unix-like computer
systems for forwarding log messages in an
IP network.

S

SAN

The subject alternative name (SAN) is an
extension to the X.509 specification that
allows you to specify additional values when
enrolling for a digital certificate. A variety of
SAN formats are supported, with DNS name
being the most common.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 188

Glossary: server name indication – Web API

server name indication

Server name indication (SNI) is an extension
to TLS that provides for including the host-
name of the target server in the initial hand-
shake request to allow the server to
respond with the correct SSL certificate or
allow a proxy to forward the request to the
appropriate target.

SMTP

Short for simple mail transfer protocol,
SMTP is a protocol for sending email
messages between servers.

SNI

Server name indication (SNI) is an extension
to TLS that provides for including the host-
name of the target server in the initial hand-
shake request to allow the server to
respond with the correct SSL certificate or
allow a proxy to forward the request to the
appropriate target.

SSH

The SSH (secure shell) protocol provides
for secure connections between computers.
It provides several options for authen-
tication, including public key, and protects
the communications with strong encryption.

SSL

TLS (Transport Layer Security) and its
predecessor SSL (Secure Sockets Layer)
are protocols for establishing authenticated
and encrypted links between networked
computers.

Subject Alternative Name

The subject alternative name (SAN) is an
extension to the X.509 specification that
allows you to specify additional values when
enrolling for a digital certificate. A variety of

SAN formats are supported, with DNS name
being the most common.

T

Template

A certificate template defines the policies
and rules that a CA uses when a request for
a certificate is received.

TLS

TLS (Transport Layer Security) and its
predecessor SSL (Secure Sockets Layer)
are protocols for establishing authenticated
and encrypted links between networked
computers.

Trusted CA

A certificate authority in the forest in which
Keyfactor Command is installed or in a
forest in a two-way trust with the forest in
which Keyfactor Command is installed.

U

Untrusted CA

A certificate authority in a forest in a one-
way trust with the forest in which Keyfactor
Command is installed or in a forest that is
untrusted by the forest in which Keyfactor
Command is installed. Non-domain-joined
standalone CAs also fall into this category.

W

Web API

A set of functions to allow creation of applic-
ations. Keyfactor offers the Keyfactor API,
which allows third-party software to integ-
rate with the advanced certificate enroll-
ment and management features of Keyfactor
Command.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 189

Glossary: Windows Orchestrator – x.509

Windows Orchestrator

The Windows Orchestrator, one of
Keyfactor's suite of orchestrators, is used
to manage synchronization of certificate
authorities in remote forests, run SSL
discovery and management tasks, and
interact with Windows servers as well as F5
devices, NetScaler devices, Amazon Web
Services (AWS) resources, and FTP capable
devices, for certificate management. In addi-
tion, the AnyAgent capability of the
Windows Orchestrator allows it to be
extended to create custom certificate store
types and management capabilities regard-
less of source platform or location.

Workflow

A workflow is a series of steps necessary to
complete a process. In the context of
Keyfactor Command, it refers to the work-
flow builder, which allows you automate
event-driven tasks when a certificate is
requested or revoked.

X

x.509

In cryptography, X.509 is a standard
defining the format of public key certi-
ficates. An X.509 certificate contains a
public key and an identity (e.g. a host name
or an organization or individual name), and is
either signed by a certificate authority or
self-signed. When a certificate is signed by
a trusted certificate authority it can be used
to establish trusted secure communications
with the owner of the corresponding private
key. It can also be used to verify digitally
signed documents and emails.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 190

4.0 Copyright Notice

User guides and related documentation from Keyfactor are subject to the copyright laws of the
United States and other countries and are provided under a license agreement that restricts
copying, disclosure, and use of such documentation. This documentation may not be disclosed, trans-
ferred, modified, or reproduced in any form, including electronic media, or transmitted or made
publicly available by any means without the prior written consent of Keyfactor and no authorization is
granted to make copies for such purposes.

Information described herein is furnished for general information only, is subject to change without
notice, and should not be construed as a warranty or commitment by Keyfactor. Keyfactor assumes
no responsibility or liability for any errors or inaccuracies that may appear in this document.

The software described in this document is provided under written license agreement, contains valu-
able trade secrets and proprietary information, and is protected by the copyright laws of the United
States and other countries. It may not be copied or distributed in any form or medium, disclosed to
third parties, or used in any manner not provided for in the software licenses agreement except with
written prior approval from Keyfactor.

11.4 Keyfactor Orchestrators Installation and Configuration Guide 191

	1.0 Introduction
	2.0 Installing Orchestrators
	2.1 Orchestrator Job Overview
	2.2 Universal Orchestrator
	2.2.1 Preparing for the Universal Orchestrator
	2.2.1.1 System Requirements
	2.2.1.2 Create Service Accounts for the Universal Orchestrator
	2.2.1.3 Configure Certificate Root Trust for the Universal Orchestrator
	2.2.1.4 Grant the Orchestrator Service Account Permissions on the CAs
	2.2.1.5 Acquire a Certificate for Client Certificate Authentication (Optional)
	2.2.1.6 Upgrading the Universal Orchestrator

	2.2.2 Install the Universal Orchestrator on Windows
	2.2.3 Install the Universal Orchestrator on a Linux Server
	2.2.4 Install the Universal Orchestrator in a Linux Container
	2.2.5 Optional Configuration
	2.2.5.1 Configure Windows Targets for Remote Management
	2.2.5.2 Configure the Universal Orchestrator for Remote CA Management
	2.2.5.3 Installing Custom-Built Extensions
	2.2.5.4 Configuring Script-Based Certificate Store Jobs
	2.2.5.5 Configure Logging for the Universal Orchestrator
	2.2.5.6 Start the Universal Orchestrator Service
	2.2.5.7 Change Service Account Passwords
	2.2.5.8 Register a Client Certificate Renewal Extension

	2.3 Java Agent
	2.3.1 Preparing for the Java Agent
	2.3.1.1 Create Service Accounts for the Java Agent
	2.3.1.2 Create a Group for Java Agent Auto-Registration (Optional)
	2.3.1.3 Configure Certificate Root Trust for the Java Agent
	2.3.1.4 Create Environment Variables for the Java Agent on Windows

	2.3.2 Install the Java Agent on Windows
	2.3.3 Install the Java Agent on Linux
	2.3.4 Optional Configuration
	2.3.4.1 Configure Logging for the Java Agent
	2.3.4.2 Start the Keyfactor Java Agent Service
	2.3.4.3 Uninstall the Java Agent

	2.4 Bash Orchestrator
	2.4.1 Preparing for the Keyfactor Bash Orchestrator
	2.4.1.1 System Requirements
	2.4.1.2 Create a Service Account for the Keyfactor Bash Orchestrator
	2.4.1.3 Create a Group for Auto-Registration (Optional)
	2.4.1.4 Certificate Root Trust for the Keyfactor Bash Orchestrator

	2.4.2 Install the Keyfactor Bash Orchestrator
	2.4.3 Install Remote Control Targets
	2.4.4 Optional Configuration
	2.4.4.1 Configure Logging for the Keyfactor Bash Orchestrator
	2.4.4.2 Start the Keyfactor Bash Orchestrator Service

	2.5 Troubleshooting
	2.6 Appendices
	2.6.1 Appendix - Generate New Credentials for the Java Agent
	2.6.2 Appendix - Set up the Universal Orchestrator to Use Client Certificate Authentication via a Reverse Proxy: Citrix ADC
	2.6.3 Appendix - Set up the Universal Orchestrator to Use Client Certificate Authentication with Certificates Stored in Active Directory
	2.6.4 Appendix - Set up the Universal Orchestrator to Use a Forwarding Proxy

	3.0 Glossary
	4.0 Copyright Notice

